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Road map

Overview of Weighted Gene Co-expression Networks
« Network construction
« (Gene co-expression modules
« Module eigengenes
Differential analysis of several networks at the level of modules
« Consensus modules and their eigengenes
« Consensus Eigengene Networks
« Applications: Expression data from
— Human and chimpanzee brains,
— Four mouse tissues



Weighted Gene Co-Expression
Network Analysis

Bin Zhang and Steve Horvath (2005)
"A General Framework for Weighted Gene Co-Expression Network Analysis",

Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1, Art. 17.



Network = Adjacency Matrix

- Adjacency matrix A=[a,] encodes whether/how a

pair of nodes is connected.

« For unweighted networks: entries are 1 (connected)
or O (disconnected)

« For weighted networks: adjacency matrix reports
connection strength between gene pairs
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aHeial  Steps for constructing a
shaasil | cO-expression network
T—— A) Get microarray gene expression data
[] y\\ B) Do preliminary filtering
/ / \ C) Measure concordance of gene
— expression profiles by Pearson
. A correlation

C) The Pearson correlation matrix is
either dichotomized to arrive at an
hEBEEBEBEL YU adjacency matrix = unweighted
g network
...Or transformed continuously with
the power adjacency function -
weighted network



Power adjacency function to
transform correlation into adjacency

a; =lcor(x,, x;) i

To determine B: in general use the “scale free topology
criterion” described in Zhang and Horvath 2005

Typical value: B=6



Comparing adjacency functions

Power Adjancy (soft threshold) vs Step Function (hard threshold)
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A continuous spectrum between perfect co-
expression and no co-expression at all

« Could threshold, but will lose information

 Instead, assign a weight to each link that
represents the extent of gene co-expression

« Natural range of weights: 0=no connection,
1=perfect agreement.



Central concept in network methodology:

Network Modules

« Modules: groups of densely interconnected genes
(not the same as closely related genes)

— a class of over-represented patterns

« Empirical fact: gene co-expression networks exhibit
modular structure



Module Detection

« Numerous methods exist

« Many methods define a suitable gene-gene
dissimilarity measure and use clustering.

 In our case: dissimilarity based on topological
overlap

« Clustering method: Average linkage hierarchical
clustering

— branches of the dendrogram are modules



Topological overlap measure,

TOM

Pairwise measure by Ravasz et al, 2002

TOM[i,j] measures the overlap of the set of nearest

neighbors of nodes i/,

Closely related to twinness

Easily generalized to weighted networks



Calculating TOM

a. a +a.

TOMl: u iu uj l
" min(k,, kj)—l—l—aij

DistTOM ; =1-TOM;

« Normalized to [0,1] with O = no overlap, 1 = perfect overlap

« Generalized in Zhang and Horvath (2005) to the case of
weighted networks



Example of module detection via
hierarchical clustering

« Expression data from human brains, 18 samples.

Dendrogram and module colors
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y are modules so important?

« Functional: expected to group together genes responsible for
individual pathways, processes etc., hence biologically well-
motivated

« Useful from a systems-biological point of view: bridge from
individual genes to a systems-level view of the organism

« For certain applications, modules are the natural building
blocks of the description, e.g., study of co-regulation
relationships among pathways

« Help alleviate the multiple-testing problem (ambiguity) of
finding genes significantly correlated with phenotypes



Module eigengenes

Often: Would like to treat modules as single units
— Biologically motivated data reduction

Construct a representative

Our choice: module eigengene = 1%t principal component of
the module expression matrix

Intuitively: a kind of average expression profile

Genes of each module must be highly correlated for a
representative to really represent
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Human brain expression data, 18
samples

Module consisting of 50 genes



Module eigengenes are very useful!

« Summarize each module in one synthetic expression profile

« Suitable representation in situations where modules are
considered the basic building blocks of a system

— Allow to relate modules to external information
(phenotypes, genotypes such as SNP, clinical traits) via
simple measures (correlation, mutual information etc)

— Can quantify co-expression relationships of various
modules by standard measures



Summary:

Weighted Gene Co-expression
Network Construction




Construct network
Tools: Pearson correlation, Soft thresholding
Rationale: make use of interaction patterns between genes

Identify modules

Tools: TOM, Hierarchical clustering
Rationale: module- (pathway-) based analysis
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Find one representative for each module

Tools: eigengene (1%t Principal Component)
Rationale: Condense each module into one profile
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Further analysis
Module relationships, module significance for traits, causal analysis etc.




« Emphasis on modules (pathways) instead of individual genes

— Alleviates the problem of multiple comparisons: ~10
instead of ~10k comparisons

« Module definition is based on gene expression data
— No prior pathway information is used for module definition
« Emphasis on a unified approach for relating variables

— Default: power of a correlation



Differential analysis

In many applications: useful information comes from
comparing data obtained under different conditions

Example: differential gene expression in healthy and diseased
tissues to find genes related to the disease

Very little in the literature on differential analysis of networks:
work on differential connectivity and crude masures of module
preservation

Network differential analysis has the potential of yielding
interesting information



Goal of this work:

Ditferential analysis of networks
(commonalities and differences)
at the level of modules



 To understand commonalities and differences in

pathway regulation

« |t is possible that some conditions are caused (or
accompanied) by changes in co-regulation that are

invisible to single gene based analysis



Typical scenario

Two (or more) microarray gene expression data sets
Genes (probes) must be the same or be matched

Samples need not be the same, sets may have different

sizes

Some preprocessing may be needed to make networks

comparable



Step 1: Find consensus modules

Consensus modules: modules present in each set

Rationale: Find common functions/processes

Set 1 Set 2

Individual set modules O O O

Consensus modules



Step 2: Represent each module by its

Module Eigengene

Pick one representative for each module in each set — we take the eigengene

Consensus modules O
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Consensus module eigengenes . .



Step 3: Networks of module eigengenes

In each set

Set 1 Set 2

Module relationship = Cor(MET[i], ME[j]) (ME:Module eigengene)

Comparing networks: Understand differences in regulation under different
conditions

Modules become basic building blocks of networks: ME networks



Summary of the methodology:

Consensus eigengene networks

* Individual set modules O OO OOO

* Consensus modules

* Consesus eigengenes

* Consensus eigengene

networks



Consensus modules: Definition

Individual set modules:
groups of densely interconnected genes

Consensus modules:

groups of genes that are densely interconnected in
each set



Consensus modules: Detection

Modules in individual sets:
Measure of gene-gene similarity (TOM) + clustering

Consensus modules:
Define a consensus gene-gene similarity measure
and use clustering
SetSim""]
7

ConsSim. =min __ {
] s € Sets



Consensus similarity measure




Consensus similarity measure




Caveats and generalizations

« Often: different data sets may not be directly comparable.
Must transform individual set similarities to make taking
minimum meaningful

« Majority instead of consensus: in some applications one may
be interested in modules that are present in a majority of
sets, not all: take average (median, etc) instead of minimum

— Can define p-majority modules by taking the p-th quantile
iInstead of minimum (p=0) or median (p=0.5)

« Exclusive (as opposed to consensus) modules: modules
present in set 1 and absent from set 2



Applications



Human and chimpanzee brain

expression data

Construct gene expression networks in both sets, find
modules

Construct consensus modules

Characterize each module by brain region where it is most
differentially expressed

Represent each module by its eigengene

Characterize relationships among modules by correlation of
respective eigengenes (heatmap or dendrogram)



Set modules

ndrogram Human Dendrogram Chimp
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Set and consensus modules
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Set and consensus modules
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Biological information?

Assign modules to brain regions with highest (positive) differential expression

Consensus MEs differential expression

cerebellum . ._ Red means the module genes
4
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* Preservation of modules across the primate brains and their

relationships to brain regions was described by Oldham et al
06.

* Challenge: The authors did not study the relationships

petween the modules.

* Solution: study module relationships using eigengene

networks



Visualizing

consensus eigengene networks

* Heatmap comparisons of module relationships

Human Chimp




Eigengene network visualization (lI)

Module dendrograms show clusters of modules with high co-expression
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Consensus modules across 4 mouse

tissues

* Consensus analysis of expression data from liver, brain,
muscle, adipose tissues, BXH mouse cross

* Data from lab of Prof. Lusis, UCLA
* ~130 samples for each tissue; 3600 genes in each network

* Performed Functional Enrichment Analysis
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Functional Enrichment Analysis

Term
ribonucleoprotein
Immune response
translation regulator activity
alternative splicing
intracellular organelle
Immune response
defense response
protein transport
cell cycle
mitotic cell cycle
protein binding
hexose metabolism

Count
30.77%
26.21%
6.19%
24.14%
46.55%
38.89%
41.67%
23.08%
43.64%
25.45%
28.15%
10.00%

p-value Bonferoni

1.65E-11 1.15E-10
8.79E-21 1.47E-18
4.13E-05 1.07E-03
/7.50E-06 8.25E-05
8.88E-05 6.22E-04
6.23E-09 6.36E-07
9.40E-09 9.59E-07
7.85E-05 1.10E-03
9.50E-22 4.46E-20
1.38E-15 6.49E-14
1.81E-04 1.62E-03
5.91E-06 1.60E-04



Conclusions

Weighted gene co-expression networks

Tool for studying co-expression patterns in high throughput data

Module analysis: a biologically motivated data reduction scheme

Differential analysis at the level of modules

Consensus modules (modules present in all sets): study common pathways

Eigengene networks (comprised of module eigengenes): study
commonalities and differences in regulation

Applications: Consensus eigengene networks are robust and encode
biologically meaningful information



For more information

Weighted Gene Co-expression Networks website:

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/



A short methodological summary of the publications.

ow to construct a gene co-expression network using the scale free topology criterion? Robustness of network results. Relating a gene
gnificance measure and the clustering coefficient to intramodular connectivity:

— Zhang B, Horvath S (2005) "A General Framework for Weighted Gene Co-Expression Network Analysis”, Statistical Applications in
Genetics and Molecular Biology: Vol. 4: No. 1, Article 17

Theory of module networks (both co-expression and protein-protein interaction modules):
— Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology 2007, 1:24
What is the topological overlap measure? Empirical studies of the robustness of the topological overlap measure:

— Yip A, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 2007,
8:22

Software for carrying out neighborhood analysis based on topological overlap. The paper shows that an initial seed neighborhood comprised of 2
or more highly interconnected genes (high TOM. high connectivity) yields superior results. It also shows that topological overlap is superior to
correlation when dealing with expression data.

— Li A, Horvath S (2006) Network Neighborhood Analysis with the multi-node topological overlap measure. Bioinformatics.
doi:10.1093/bioinformatics/btl581

Gene screening based on intramodular connectivity identifies brain cancer genes that validate. This paper shows that WGCNA greatly alleviates
the multiple comparison problem and leads to reproducible findings.

— Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Shu, Q, Lee Y, Scheck AC, Liau LM, Wu H,
Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006) "Analysis of Oncogenic Signaling Networks in
Glioblastoma Identifies ASPM as a Novel Molecular Target", PNAS | November 14, 2006 | vol. 103 | no. 46 | 17402-17407

The relationship between connectivity and knock-out essentiality is dependent on the module under consideration. Hub genes in some modules
may be non-essential. This study shows that intramodular connectivity is much more meaningful than whole network connectivity:

—  "Gene Connectivity, Function, and Sequence Conservation: Predictions from Modular Yeast Co-Expression Networks" (2006) by Carlson
MRJ, Zhang B, Fang Z, Mischel PS, Horvath S, and Nelson SF, BMC Genomics 2006, 7:40

How to integrate SNP markers into weighted gene co-expression network analysis? The following 2 papers outline how SNP markers and co-
expression networks can be used to screen for gene expressions underlying a complex trait. They also illustrate the use of the module eigengene
based connectivity measure kME.

—  Single network analysis: Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ,
Horvath S (2006) "Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight". PLoS Genetics. Volume 2 |
Issue 8 | AUGUST 2006
— Differential network analysis: Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S (2007) "Weighted Gene Co-expression
Network Analysis Strategies Applied to Mouse Weight", Mammalian Genome. In Press
The following application presents a “supervised’ gene co-expression network analysis. In general, we prefer to construct a co-expression network
and associated modules without regard to an external microarray sample trait (unsupervised WGCNA). But if thousands of genes are differentially
expressed, one can construct a network on the basis of differentially expressed genes (supervised WGCNA):

- Gar%alovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang W, He A, Truong A, Patel S, Nelson SF, Horvath S, Berliner J,
Kirchgessner T, Lusis AJ (2006) Identification of Inflammatory Gene Modules based on Variations of Human Endothelial Cell Responses to
Oxidized Lipids. PNAS 22;103(34):12741-6

The following paper presents a differential co-expression network analysis. It studies module preservation between two networks. By screening for
qenesdw th differential topological overlap. we identify biologically interesting genes. The paper also shows the value of summarizing a module by
its module eigengene.

— Oldham M, Horvath S, Geschwind D (2006) Conservation and Evolution of Gene Co-expression Networks in Human and Chimpanzee
Brains. 2006 Nov 21;103(47):17973-8
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