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This is a self-contained R software tutorial that illustrates how to carry out an eigengene network analysis
across two datasets. The two data sets correspond to gene expression measurements in human and
chimpanzee brains. The R code allows to reproduce the Figures and tables reported in Langfelder and
Horvath (2007). Some familiarity with the R software is desirable but the document is fairly self-
contained.

The methods and biological implications are described in the following reference
» Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Bioinformatics

The microarray data and processing steps are described in
e Oldham M, Horvath S, Geschwind D (2006) Conservation and Evolution of Gene Co-
expression Networks in Human and Chimpanzee Brains. PNAS. Nov 21;103(47):17973-8

This tutorial and the data files can be found at the webpage
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/EigengeneNetwork

More material on weighted network analysis can be found at
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/

The unprocessed data came originally from Khaitovich et al (2004). To facilitate comparison with the
original analysis, we use the microarray normalization procedures and gene selection procedures
described in Oldham et al (2006).

Analysis of microarray data

The following description is taken from Oldham et al 2006. The dataset used for network construction
consisted of 36 Affymetrix HGU95AvV2 microarrays surveying gene expression with 12,625 probe sets in
three adult humans and three adult chimpanzees across six matched brain regions: Broca's area, anterior
cingulate cortex, primary visual cortex, prefrontal cortex, caudate nucleus, and cerebellar vermis. Because
the arrays used in this study were designed for human mRNA sequences, it is necessary to account for the
effect of interspecies sequence differences on chimpanzee gene-expression values. All probes on the array
were compared against the human genome (Build 34) and the chimpanzee draft genome using MegaBlast
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(http://www.ncbi.nlm.nih.gov/BLAST/). = Any probe without a perfect match in both species
(approximately 1/4) was masked during the calculation of expression values (GCOSv1.2, Affymetrix,
Inc). In addition, only probe sets with six or more matching probes were retained for subsequent analyses
(n=11,768/12,625). For each array, expression values were scaled to an average intensity of 200
(GCOSv1.2, Affymetrix, Inc.). Quantile normalization was then performed and inter-array correlations
were calculated using R. Following quantile normalization, the average inter-array correlation was 0.924
among all 18 human arrays and 0.937 among all 18 chimpanzee arrays. In specific instances in which the
composition of this dataset was altered, the removal of a brain region(s) took place prior to quantile
normalization.

For computational reasons, network analysis was limited to 4000 probe sets. (Note: although some genes
are represented by multiple probe sets and other probe sets are not fully annotated, for consistency we
refer to probe sets as "genes" throughout the manuscript, unless otherwise noted.) In order to enrich this
subset with genes likely to play important roles in the brain, a non-neural "filter" was applied to identify
genes with greater variance in neural versus non-neural tissue. A publicly available microarray dataset
was obtained for human lung (3). The human lung dataset consisted of 18 Affymetrix HGU95AV2
microarrays measuring gene expression in normal adult human lung tissue, and was normalized as
described above. The same probe mask file that was used for the human and chimpanzee brain datasets
was also applied to the human lung dataset. After scaling all arrays to the same average intensity (200),
the mean inter-array correlation for one human lung array (CL2001032718AA) was 2.91 SD below the
average and was removed from the dataset. Following quantile normalization in R, the average inter-array
correlation for the human lung dataset was 0.925. For each probe set on the microarray, the variance was
calculated in the non-neural (lung) and neural (brain) datasets for the human samples. All probe sets were
ranked according to their variance in both the neural and non-neural datasets, and each probe set's rank in
the neural dataset was subtracted from its rank in the non-neural dataset. These rank differences (sorted
from high to low) were used to select the top 4000 probe sets among all probe sets showing greater
variance in human brain than human lung. In cases where <4000 probe sets showed greater variance in
brain than lung, the top 4000 probe sets were selected solely on the basis of their rank differences between
the neural and non-neural datasets.

Weighted gene co-expression network construction.

In co-expression networks, nodes correspond to genes, and connection strengths are determined by the
pairwise correlations between expression profiles. In contrast to unweighted networks, weighted networks
use soft thresholding of the Pearson correlation matrix for determining the connection strengths between
two genes. Soft thresholding of the Pearson correlation preserves the continuous nature of the gene co-
expression information, and leads to results that are highly robust with respect to the weighted network
construction method (Zhang and Horvath 2005). The theory of the network construction algorithm is
described in detail elsewhere (Zhang and Horvath, 2005). Briefly, a gene co-expression similarity measure



(absolute value of the Pearson product moment correlation) is used to relate every pairwise gene—gene
relationship. An adjacency matrix is then constructed using a “soft” power adjacency function a; = Icor(x;,
x)" where the absolute value of the Pearson correlation measures gene is the co-expression similarity,
and a; represents the resulting adjacency that measures the connection strengths. The network connectivity
(kan) of the i-th gene is the sum of the connection strengths with the other genes. The network satisfies
scale-free topology if the connectivity distribution of the nodes follows an inverse power law, (frequency
of connectivity p(k) follows an approximate inverse power law in k, i.e., p(k) ~ kN -p

Horvath (2005) proposed a scale-free topology criterion for choosing . , which was applied here. In
order to make meaningful comparisons across datasets, a power of i =9 was chosen for all analyses. This
scale free topology criterion uses the fact that gene co-expression networks have been found to satisfy
approximate scale-free topology. Since we are using a weighted network as opposed to an unweighted
network, the biological findings are highly robust with respect to the choice of this power. Many co-
expression networks satisfy the scale-free property only approximately.

Topological Overlap and Module Detection

A major goal of network analysis is to identify groups, or "modules"”, of densely interconnected genes.
Such groups are often identified by searching for genes with similar patterns of connection strengths to
other genes, or high "topological overlap”. It is important to recognize that correlation and topological
overlap are very different ways of describing the relationship between a pair of genes: while correlation
considers each pair of genes in isolation, topological overlap considers each pair of genes in relation to all
other genes in the network. More specifically, genes are said to have high topological overlap if they are
both strongly connected to the same group of genes in the network (i.e. they share the same
"neighborhood"). Topological overlap thus serves as a crucial filter to exclude spurious or isolated
connections during network construction (Yip and Horvath 2007). To calculate the topological overlap
for a pair of genes, their connection strengths with all other genes in the network are compared. By
calculating the topological overlap for all pairs of genes in the network, modules can be identified.

The advantages and disadvantages of the topological overlap measure are reviewed in Yip and Horvath
(2007) and Zhang and Horvath (2005).

Consensus module detection

Consensus module detection is similar to the individual dataset module detection in that it uses
hierarchical clustering of genes according to a measure of gene dissimilarity. We use a gene-gene
consensus dissimilarity measure Dissim(i,j) as input of average linkage hierarchical clustering. We define
modules as branches of the dendrogram. To cut-off branches we use a fixed height cut-off. Modules must
contains a minimum number n, of genes. Module detection proceeds along the following steps:

(1) perform a hierarchical clustering using the consensus dissimilarity measure;

(2) cut the clustering tree at a fixed height cut-off;

(3) each cut branch with at least n, genes is considered a separate module;



(4) all other genes are considered unassigned and are colored in ~"grey".
The resulting modules will depend to some degree on the cut height and minimum size.

Definition of the Eigengene

Denote by X the expression data of a given module (rows are genes, columns are microarray samples).
First, the gene expression data X are scaled so that each gene expression profile has mean 0 and variance
1. Next, the gene-expression data X are decomposed via singular value decomposition (X=UDV") and the
value of the first module eigengene, V,, represents the module eigengene. Specifically, V, corresponds to
the largest singular value. This definition is equivalent to defining the module eigengene as the first
principal component of cor(t(X)), i.e. the correlation matrix of the gene expression data.

Consensus module analysis

Our gene selection criteria were identical to those of Oldham et al 2006, described above. Specifically, of
the 4000 genes (Affymetric microarray probesets) expressed in the brain samples, we selected the ones
whose scaled connectivity (that is, connectivity normalized by the connectivity of the most connected
gene) is at least 0.1 in both human and chimp samples. The Pearson correlation matrices for each dataset
were turned into adjacencies by raising their absolute values to power e =9; the adjacencies were used to
compute the TOM similarities in each dataset. The consensus dissimilarity was computed as minimum
TOM across the two data sets. We used the consensus dissimilarity as input of average-linkage
hierarchical clustering. Branches of the resulting dendrogram were identified using a fixed-height cut of
0.96 and minimum module size of 25. To determine whether some of the 9 detected initial modules were
too similar, we calculated their eigengenes in each dataset, and formed their correlation matrices (one for
each dataset). A consensus eigengene similarity matrix was calculated as the minimum of the data set
specific eigengene correlation matrices; this matrix was turned into dissimilarity by subtracting it from
one and used as input of average-linkage hierarchical clustering again. In the resulting dendrogram of
consensus modules, branches with merging height less than 0.25 were identified and modules on these
branches were merged. Such branches correspond to modules whose eigengenes have a correlation of 0.75
or higher, which we judge to be close enough to be merged. This module-merging procedure resulted in 7
final consensus modules that are described in our main text.
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R code performing the statistical analysis

Downloading the R software:

Go to http://www.R-project.org, download R and install it on your computer. After
installing R, you need to install several additional R library packages: For example to
install Hmisc, open R, go to menu "Packages\Install package(s) from CRAN", then
choose Hmisc. R will automatically install the package. When asked "Delete downloaded
files (y/N)? ", answer "y". Do the same for the following packages: MASS, cluster,
sma, impute, survival, and fields. Note that some of these libraries may already

present in R so there is no need to re-install them.

Download the files:

1) R function file: "NetworkFunctions-Mouse.R", which contains several R functions
needed for Network Analysis.

2) The zipped data files and this tutorial.

Unzip all the files into the same directory. The user should copy and paste the following
script into the R session. Text after "#" is a comment and is automatically ignored by R.

#Absolutely no warranty on the code. Please contact Peter Langfelder and Steve Horvath #
with suggestions

# Set the working directory of the R session by using the following command:
setwd (“C:/Documents and Settings/HumanChimpNetwork”)

# Note that we use / instead of \ in the path.

source ("NetworkFunctions—HumanChimp.R");
options(stringsAsFactors = FALSE);

data=read.csv("Dataset 1 (network construction).csv", header=T, as.is=T,
strip.white=TRUE)

ProbeNames = datal,1]

SampleNames = colnames(data)[-1]

ExprData = data.frame(t(data[data$Brain_variant_H>0,2:37]))
AuxData = data.frame(t(datal[data$Brain_variant_H>0,38:391))

names (ExprData) = ProbeNames[data$Brain_wvariant_H>0]



names (AuxData) = ProbeNames[data$Brain_variant_H>0]

# Note - in the data file, chimp is first and human second - we want them the other
way around.

Subsets c(rep(2, times=18), rep(l, times=18))
No.Sets = 2;

Set.Labels = c("Human", "Chimp");

SoftPower = 9;

ModuleMinSize = 25;

BranchHeightCutoff = 0.95;

No.Samples = length(Subsets);

No.SelectedGenes = 2500;

KeepOverlapSign = FALSE;

OutFileBase = "Plot-HC-";

PlotDir = ""

FuncAnnoDir = ""

NetworkFile = "HumanChimp-Network.RData";

StandardCex

1.4;

# Calculate gene co-expression networks in each set

Connectivity = GetConnectivity(ExprData, Subsets, SoftPower=SoftPower, verbose=2);
ScaledConnectivity = Connectivity;

ScaledConnectivity[,1] = Connectivity[,1l]/max(Connectivityl[,11])
ScaledConnectivity[,2] = Connectivity[,2]/max(Connectivityl[,2])

# Now repeating the same criteria that Mike Oldham and co. used:

minconnections=.1

SelectedGenes = ScaledConnectivity[,1]>minconnections | ScaledConnectivityl,
2]>minconnections

print(table(SelectedGenes));

Modules = GetModules (ExprData, Subsets, SelectedGenes, SoftPower,
BranchHeightCutoff, ModuleMinSize, KeepOverlapSign =

KeepOverlapSign, verbose = 2);
Network = list(Subsets = Subsets, SoftPower = SoftPower, Connectivity = Connectivity,
SelectedGenes = SelectedGenes, Dissimilarity = Modules

SDissimilarity,
DissimilarityLevel = Modules$DissimilarityLevel,
ClusterTree = Modules$ClusterTree, Colors = Modules$Colors,
BranchHeightCutoff = Modules$BranchHeightCutoff,
ModuleMinSize = ModulesS$ModuleMinSize);

rm(Modules); collect_garbage();



#save(Network, file=NetworkFile);
#load(file=NetworkFile);

# Calculate consensus modules
ConsBranchHeightCut = 0.95; ConsModMinSize = ModuleMinSize;

Consensus = IntersectModules(Network = Network,

ConsBranchHeightCut = ConsBranchHeightCut,
ConsModMinSize = ConsModMinSize,

verbose = 4)

# Detect modules in the calculated consensus dissimilarity for 6 different height
cuts

No.Genes = sum(Network$SelectedGenes) ;

ConsCutoffs = seq(from = 0.94, to = 0.98, by = 0.01);

No.Cutoffs = length(ConsCutoffs);

ConsensusColor = array(dim = c(No.Genes, No.Cutoffs));

for (cut in 1:No.Cutoffs)

{

ConsensusColor[, cut] = as.character(modulecolor2(Consensus$ClustTree,

ConsCutoffs[cut],30));

# Plot a preliminary consensus dendrogram with the detected colors

par (mfrow = c(2,1));
plot(Consensus$ClustTree, labels = FALSE, ylim=c(0,2), main= "Consensus dendrogram");
str_cutoffs = paste(ConsCutoffs, collapse =", ");

hclustplotn(Consensus$ClustTree, ConsensusColor,
RowLabels=as.character (ConsCutoffs));



Consensus dendrogram
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#dev.copy2eps(file=paste(PlotDir, OutFileBase, "ConsDendr-raw.eps",sep=""));

# We pick the dendrogram cut height to be 0.96.

ChosenCut = 3;

Consensus$Colors = as.character(modulecolor2(Consensus$ClustTree,
ConsCutoffs[ChosenCut],30));

#Calculate consensus module principal components (consensus eigengenes) in both sets

PCs = NetworkModulePCs (ExprData, Network, UniversalModuleColors = Consensus$Colors,
verbose=3)

# Order module eigengenes (MEs, also referred as Principal Components, PCs)

OrderedPCs = OrderPCs(PCs, GreyLast=TRUE, GreyName = "MEgrey");



# Plot a matrix of network and preservation plots

SizeWindow(7.5,9);

par(cex = StandardCex/1.4);

par(mar = c(2,2.0,2.2,5));

PlotCorPCsAndDendros (OrderedPCs, Titles = Set.Labels, ColorLabels
= TRUE,

TRUE, IncludeSign

IncludeGrey = FALSE, setMargins = FALSE, plotCPMeasure = FALSE,

plotMeans = TRUE, CPzlim = c(0.75,1), plotErrors = TRUE, marHeatmap =
c(2,3,2.5,5),

marDendro = c¢(1,3,1.2,2), LetterSubPlots = TRUE, Letters = "BCDEFGHIJKL",

PlotDiagAdj = TRUE);
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#dev.copy2eps(file=paste(PlotDir, OutFileBase, "PCCor-raw.eps",sep=""));

# Merge modules whose eigengenes are too close:
# Cluster the found module eigengenes and merge ones that are too close to one
another _in both sets_.

ModuleMergeCut = 0.25;
MergedColors = MergeCloseModules (ExprData, Network, Consensus$Colors, CutHeight =
ModuleMergeCut,



OrderedPCs = OrderedPCs, UseAbs = FALSE, verbose = 4,
print.level = 0);

# Plot the detailed consensus dendrogram with the module clustering

SizeWindow(7,7);

par(mfrow = c(1,1));

par(cex = StandardCex/1.2);

plot(MergedColors$ClustTree, main = "Consensus module dendrogram before merging",
xlab = "", sub = "");

abline(ModuleMergeCut, 0, col="red");

Consensus module dendrogram before merging
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# dev.copy2eps(file=paste(PlotDir, OutFileBase, "ModuleDendr-raw.eps",sep=""));

# Cluster again? Copy — paste this until the function reports no merging of branches.



MergedColors = MergeCloseModules(ExprData, Network, MergedColors$Colors, CutHeight =
ModuleMergeCut,

OrderedPCs = OrderedPCs, UseAbs = FALSE, verbose = 4,
print.level = 0);
# Check the results...

No.Mods = nlevels(as.factor(MergedColors$Colors));
ModColors = levels(as.factor(MergedColors$Colors));

table(as.factor (MergedColors$Colors));
# Relabel consensus colors to match Oldham et al's human colors...

Colors2 = MergedColorsS$Colors;

MergedColors$Colors[Colors2=="black"] = "blue";
MergedColorsS$SColors[Colors2=="blue"] = "brown";
MergedColors$Colors[Colors2=="brown"] = "yellow";
MergedColorss$Colors[Colors2=="green"] = "black";
MergedColors$Colors[Colors2=="red"] = "pink";
MergedColors$Colors[Colors2=="yellow"] = "red";

# Recalculate module principal components

PCs = NetworkModulePCs(ExprData, Network, UniversalModuleColors = MergedColors
SColors,

verbose=3)
OrderedPCs = OrderPCs(PCs, GreyLast=TRUE, GreyName = "MEgrey");

# Plot a differential analysis plot of networks
SizeWindow(7.5,9);

par(cex = StandardCex/1.4);

par(mar = c(2,2.0,2.2,5));

PlotCorPCsAndDendros (OrderedPCs, Titles = Set.Labels, ColorLabels
= TRUE,

TRUE, IncludeSign

IncludeGrey = FALSE, setMargins = FALSE, plotCPMeasure = FALSE,

plotMeans = TRUE, CPzlim = c(0.75,1), plotErrors = TRUE, marHeatmap =
c(2,3,2.5,5),

marDendro = c¢(1,3,1.2,2), LetterSubPlots = TRUE, Letters = "BCDEFGHIJKL",

PlotDiagAdj = TRUE);
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#dev.copy2eps(file=paste(PlotDir, OutFileBase, "PCCor.eps",sep=""));

# Plot the new module membership vs. the consensus dendrogram. This figure is used in
the
# paper.

SizeWindow(8,4);

lo = layout(matrix(c(1,2), 2, 1, byrow = TRUE), heights = c¢(0.85, 0.15));
layout.show(1lo);

par(cex = StandardCex);



par (mar=c(0,4.2,2.2,0.2));

plot(Consensus$ClustTree, labels = FALSE, main = "A. Consensus dendrogram and module
colors", xlab="",
sub="", ylab = "Dissimilarity", hang = 0.03);

abline(ConsCutoffs[ChosenCut], 0, col="red");
par(mar=c(0.2,4.2,0,0.2));
hclustplotl(Consensus$ClustTree, MergedColors$Colors, titlel = "");

A. Consensus dendrogram and module colors
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#dev.copy2eps(file=paste(PlotDir, OutFileBase, "ConsDendr-ConsOnly.eps",sep=""));
#dev2bitmap(file = paste(PlotDir, OutFileBase, "ConsDendr-ConsOnly.pdf",sep=""),

width = 8, type =
#"pdfwrite");

# Plot the new module membership vs. set dendrograms

SizeWindow(13,8);
par(mfcol=c(2,2));
par(mar=c(1.4,4,2,0.3)+0.1);
par(cex = StandardCex);
for (i in (1:No.Sets))
{

plot (NetworkS$ClusterTreel [ ]$data,labels=F,xlab="",main=paste("Dendrogram",
Set.Labels[i]),

ylim=c(0,1), sub="")
SCColor = cbind(Network$Colors|[, i], MergedColors$Colors);

RowLabels = c(Set.Labels[i], "Consensus");
hclustplotn(Network$ClusterTree[[1]]$data, SCColor, RowLabels = RowlLabels,
cex.RowLabels = 1,

main="Module colors")
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#dev.copy2eps(file=paste(PlotDir, OutFileBase, "SetDendr.eps",sep=""));

# Check module heatmap plots to make sure the modules make sense on the level of
expression
# data. Note: resulting figures are not reproduce here

ScaledExprData = scale(ExprData);

ModColors = levels(as.factor(MergedColors$Colors));
No.Mods = length(ModColors);

No.Samples = dim(ExprData)[l];

PlotSections = c(2,2);

PlotsPerScreen = prod(PlotSections);
No.SampleOrders = 2;
No.Screens = as.integer (No.Mods*No.SampleOrders/PlotsPerScreen) ;

if (No.Screens * PlotsPerScreen!=No.Mods) No.Screens = No.Screens + 1;
SampleOrder = matrix(0, nrow=No.Samples, ncol=No.SampleOrders);

BaseOrder = seq(from=1, by=6, length.out=6);
SampleOrder[1l:6,1] = BaseOrder;
for (i1 in (2:6))
{

SampleOrder[c( ((i-1)*6+1):(i*6)), 1] = BaseOrder + (i-1);
}
SampleOrder[,2] = c(l:No.Samples);

par (mar=c(2,3,5,3));
par(oma=c(0,0,2,0));



module = 1; sorder = 1;
for (screen in 1:No.Screens)
{
par (mfrow = PlotSections);
for (Plot in 1:PlotsPerScreen) if (module <= No.Mods)
{
ModExprData = ScaledExprDatal[, Network$SelectedGenes]|
SampleOrder[,sorder], MergedColors$Colors ==
ModColors[module]];
plot.mat(t(ModExprData), title = ModColors[module], clabels = rownames (ExprData)
[SampleOrder|[,sorder]]);
if (sorder==2)

{

module = module + 1;
sorder = 1;
} else {
sorder = sorder+l;
}
}
print("Press enter to continue"); scan();

# Assign modules to brain regions; brain regions are based on Oldham et al, 2006.

No.Samples = length(Network$Subsets);
SetPCs = NetworkModulePCs (ExprData, Network, UniversalModuleColors = Network$Colors|,
11,
verbose=3)
OrderedSetPCs = OrderPCs(SetPCs, GreyLast=TRUE, GreyName = "MEgrey");
SetModColors = names(OrderedSetPCs[[1]]S$data);
No.SetMods = length(SetModColors);
MergedSetPCs = matrix(0, nrow = No.Samples, ncol = No.SetMods);
for (set in 1:No.Sets)
{
MergedSetPCs[Network$Subsets==set, ] = as.matrix(OrderedSetPCs[[set]]S$data);

ConsPCs = NetworkModulePCs (ExprData, Network, UniversalModuleColors = MergedColors
$Colors,

verbose=3)
OrderedConsPCs = OrderPCs(ConsPCs, GreylLast=TRUE, GreyName = "MEgrey");

ConsModColors = names (OrderedConsPCs[[1]]$data);
No.ConsMods = length(ConsModColors) ;

MergedConsPCs = matrix(0, nrow = No.Samples, ncol = No.ConsMods);
for (set in 1:No.Sets)



MergedConsPCs[Network$Subsets==set, ] = as.matrix(OrderedConsPCs|[[set]]S$data);

Tissues = c("cerebellum", "cortical", "caudate", "cerebcort", "caudacc");
No.Tissues = length(Tissues);
ConsTissueAssignment = matrix(0, nrow=No.Tissues, ncol=No.ConsMods-1);

SetTissueAssignment = matrix(0, nrow=No.Tissues, ncol=No.SetMods-1);
# manually assign samples to tissue groups

Selector = matrix(0, nrow = No.Samples, ncol = No.Tissues);
, Tissues == "cerebellum"] = rep(c(0,0,0,0,0,1),6);

Selector]

Selector[, Tissues == "cortical"] = rep(c(1,1,1,1,0,0),6);
Selector[, Tissues == "caudate"] = rep(c(0,0,0,0,1,0),6);
Selector[, Tissues == "cerebcort"] = rep(c(l,1,1,1,0,1),6);
Selector[, Tissues == "caudacc"] = rep(c(0,1,0,0,1,0),6);

for (tissue in 1:No.Tissues)
{
print(paste("For tissue", Tissues[tissue], "selecting samples ",
paste(rownames (ExprData)[Selector[, tissuel==1], collapse=", ")));

for (mod in 1:No.SetMods) if (names(OrderedConsPCs[[1l]]S$data)[mod]!="MEgrey")
{
SetTissueAssignment[tissue, mod] = -loglO(kruskal.test(MergedSetPCs[, mod],
Selector[, tissue])S$p.value);
gmean = tapply(MergedSetPCs[, mod], Selector[, tissue], mean);
if (gmean[2]<gmean[l]) SetTissueAssignment[tissue, mod] =
—-SetTissueAssignment[tissue, mod];
}
for (mod in 1:No.ConsMods) if (names(OrderedConsPCs[[1]]$data)[mod]!="MEgrey")
{
ConsTissueAssignment|[tissue, mod] =
-logl0(kruskal.test(MergedConsPCs|[, mod], Selector[, tissuel])
Sp.value);
gmean = tapply(MergedConsPCs[, mod], Selector[, tissue], mean);
if (gmean[2]<gmean[l]) ConsTissueAssignment[tissue, mod] =
—ConsTissueAssignment|[tissue, mod];

}

ConsModColorLabels = ConsModColors|[ConsModColors!="MEgrey"];

SizeWindow(10,4);
par (mfrow=c(1l,2));
par (cex StandardCex/1.4);
par(mar = c(3,3,2,2)+0.2);

MaxPVal = max(abs(ConsTissueAssignment), abs(SetTissueAssignment));



HeatmapWithTextLabels(Matrix

ConsTissueAssignment,

xLabels ConsModColorLabels,

= "Consensus MEs differential

yLabels = Tissues,
colors = GreenWhiteRed(50),
InvertColors=FALSE, main
expression",
zlim = c(-MaxPVal, +MaxPVal));
par(cex = StandardCex/1.4);
par(mar = c(3,3,2,2)+0.2);

HeatmapWithTextLabels (Matrix
Tissues,

colors
InvertColors=FALSE, main

expression",

zlim = c(-MaxPVal,

Consensus MEs differential expression

SetTissueAssignment, xLabels

SetModColors,

GreenWhiteRed (50),

= "Human set MEs differential

+MaxPVal));

Human set MEs differential expression
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#dev.copy2eps(file = paste(PlotDir, OutFileRase,
"ModuleTissueAssignment.eps",sep=""));

# Assign consensus and human set modules to one another

SetModColors
No.SetMods
ConsModColors
No.ConsMods

as.factor (Network$Colors],
nlevels(SetModColors);

11);

nlevels(ConsModColors) ;

pTable = matrix(0, nrow = No.SetMods, ncol =
CountTbl = matrix(0, nrow = No.SetMods, ncol =
for (smod in 1:No.SetMods)

for (cmod in 1:No.ConsMods)

{

as.factor (MergedColors$Colors);

No.ConsMods) ;

No.ConsMods) ;

yLabels



SetMembers = (SetModColors == levels(SetModColors)[smod]);

ConsMembers = (ConsModColors == levels(ConsModColors)[cmod]);

pTable[smod, cmod] = -1loglO(fisher.test(SetMembers, ConsMembers, alternative =
"greater")S$p.value);

CountTbl[smod, cmod] = sum(SetModColors == levels(SetModColors)[smod] &
ConsModColors ==

levels(ConsModColors) [cmod])

pTable[is.infinite(pTable)] = 1.3*max(pTable[is.finite(pTable)]);
pTable[pTable>50 ] = 50 ;

PercentageTbl = CountTbl;
for (smod in 1:No.SetMods)

PercentageTbl[smod, ] = as.integer(PercentageTbl[smod, ]/sum(PercentageTbl[smod, ])
* 100);

SetModTotals = as.vector(table(SetModColors));
ConsModTotals = as.vector(table(ConsModColors));

SizeWindow(7,9);

par (mfrow=c(2,1));

par(cex = StandardCex/1.4);
par(mar=c(6,9,2,2)+0.3);

HeatmapWithTextLabels(Matrix = pTable,

xLabels = paste("Cons ", levels(ConsModColors), ": ",
ConsModTotals, sep=""),
yLabels = paste(Set.Labels[1l], " ", levels(SetModColors), ": ",
SetModTotals,
sep=""),

NumMatrix = CountTbl,
InvertColors = TRUE, SetMargins = FALSE,
main = "A. Fisher test p-value and counts");

par(cex = StandardCex/1.4);
par(mar=c(6,9,2,2)+0.3);

HeatmapWithTextLabels(Matrix = PercentageTbl,

xLabels = paste("Cons ", levels(ConsModColors), ": ",
ConsModTotals, sep=""),
yLabels = paste(Set.Labels[1l], " ", levels(SetModColors), ": ",
SetModTotals,
sep=""),

NumMatrix = CountTbl,
InvertColors = TRUE, SetMargins = FALSE,
main = "% of human in cons mods and counts", zlim = c(0,100));



A. Fisher test p-value and counts
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#dev.copy2eps(file = paste(PlotDir, OutFileBase, "SetVsConsModules.eps",sep=""));



