

Functional Organization of the Transcriptome in Human Brain

Michael C. Oldham Laboratory of Daniel H. Geschwind, UCLA BIOCOMP '08, Las Vegas, NV July 15, 2008

Neurons

Astrocytes

Oligodendrocytes

Microarray studies of the human brain face a number of challenges

- Cellular heterogeneity
 - mRNA extracted from tissue homogenates
- Sample quality
 - Post-mortem tissue
- Sample size
 - Typically, <10 individuals per group
- Focus on differential expression

What's wrong with differential expression?

Methodological overview: WGCNA

Sample

F

The data

Network 1 (U133 cortex): 67 samples, 67 individuals

Brain region	Reference	nce # samples # outli		# samples post QC
BA46	Iwamoto et al.*	34	5	20**
BA9, BA11	Ryan et al.	42 (31 BA9, 11 BA11)	8 (5 BA9, 3 BA11)	21 (13 BA9, 8 BA11)**
BA4, BA9	Hodges et al.	28 (16 BA4, 12 BA9)	2 (2 BA9)	26 (16 BA4, 10 BA9)

Network 2 (U95 cortex): 42 samples, 32 individuals

Brain region	Reference	# samples	# outliers	# samples post QC
BrA (x2), ACC, PrV, Prf, BrRH, Prm	Khaitovich et al.	21	7	12 (2 each region)
FP, alT, IPL, MFG	Caceres et al.	7	5	2 (2 FP)
BA9	Enard et al.	6	2	2 (2 BA9)
BA9	Khaitovich et al.	3	2	1 (BA9)
BA10	Lu et al.	30	18	12 (BA10)
BA10	Iwamoto et al.*	15	2	13 (BA10)

Network 3 (U133 caudate nucleus): 27 samples, 27 individuals

Brain region	Reference	# samples	# outliers	# samples post QC
Caudate nucleus	Hodges et al.	32	5	27

Network 4 (U133 cerebellum): 24 samples, 24 individuals

Brain region	Reference	# samples	# outliers	# samples post QC
Cerebellum	Hodges et al.	27	3	24

* Raw data obtained in collaboration with Dr. Kazuya Iwamoto and Dr. Tadafumi Kato at RIKEN.

** Following outlier removal, there were 11 pairs of samples from the same individuals in Iwamoto et al. and Ryan et al. One unique sample per individual was retained.

Many modules are preserved across networks

Quantifying module membership with k_{me}

• $k_{\rm me}$ is the Pearson correlation between the expression level of a given probe set and a given eigengene, e.g.:

CN turquoise Top 10 genes by |kme|

$k_{\rm me}$ is significantly correlated across networks

Cortex_95

Sample

Sample

Cortex_95

Sample

Sample

Sample

Cortex_95

Sample

Caudate nucleus

Conserved modules are enriched for markers of major cell classes

Network	Module	Color	Oligodendrocytes ¹	Oligodendrocytes ²	Astrocytes ¹	Astrocytes ²	Neurons ¹	Neurons ²
CTX	M9A	turquoise	138 / 352 p = 8.1e-71	47 / 60 p = 8.3e-43	NS	NS	NS	NS
CTX95	M9B	turquoise	63 / 256 p = 4.3e-37	29 / 55 p = 1.1e-27	NS	NS	NS	NS
CN	M9C	turquoise	93 / 352 p = 8.8e-66	29 / 60 p = 2.1e-28	NS	NS	NS	NS
CB	M9D	turquoise	58 / 352 p = 5.6e-38	30 / 60 p = 2.2e-35	NS	NS	NS	NS
CTX	M15A	brown	NS	NS	220 / 554 p = 2.0e-122	19 / 32 p = 5.7e-14	NS	NS
CTX95	M15B	brown	NS	11 / 55 p = 3.2e-03	145 / 430 p = 5.3e-79	13 / 27 p = 7.2e-09	NS	NS
CN	M15C	brown	NS	NS	99 / 554 p = 2.5e-61	14 / 32 p = 6.6e-14	NS	NS
CB	M15D	brown	NS	9 / 60 p = 1.0e-04	102 / 554 p = 6.1e-69	16 / 32 p = 1.1e-17	NS	NS
CTX	M16A	blue	NS	NS	NS	NS	164 / 709 p = 8.4e-30	14 / 50 p = 2.0e-03
CTX95	M16B	blue	NS	NS	NS	NS	68 / 546 p = 4.0e-15	7 / 40 p = 2.4e-02
CN	M16C	blue	NS	NS	NS	NS	64 / 709 p = 1.7e-14	11 / 50 p = 4.4e-06
CB	M16D	blue	NS	NS	NS	NS	50 / 709 p = 5.4e-05	7 / 50 p = 4.1e-02

Network	Module	Oligodendrocytes ³	Astrocytes ⁴	Synaptic proteins ⁵	Synaptic proteins ⁶
CTX	M9A	128/458 p=5.5e-46	NS	NS	NS
CTX_95	M9B	49/358 p=1.4e-16	4/18 p=4.6e-02	NS	NS
CN	M9C	76/458 p=2.3e-37	NS	NS	NS
CB	M9D	43/458 p=1.0e-17	NS	NS	NS
CTX	M15A	NS	15/22 p=2.6e-12	NS	NS
CTX_95	M15B	NS	12/18 p=1.9e-10	NS	NS
CN	M15C	NS	9/22 p=1.5e-08	NS	NS
CB	M15D	NS	14/22 p=1.7e-17	NS	NS
CTX	M16A	NS	NS	117/580 p=6.9e-16	23/60 p=1.6e-08
CTX_95	M16B	NS	NS	46/490 p=4.7e-06	10/55 p=1.6e-03
CN	M16C	NS	NS	55/580 p=3.1e-13	13/60 p=4.1e-07
CB	M16D	NS	NS	53/580 p=4.2e-09	15/60 p=4.0e-08

¹ Cahoy, J.D. et al. J Neurosci 28: 264-78 (2008)

³ Nielsen, J.A. *et al. J Neurosci* **26**: 9881-9891 (2006)

⁵ Genes2Cognition Consortium

² Lein, E.S. *et al. Nature* **445**: 168-76 (2007)

⁴ Bachoo, R.M. et al. PNAS 101: 8384-8389 (2004)

⁶ Morciano, M. et al. J Neurochem 95: 1732-1745 (2005)

Thought experiment

The cortical transcriptome is organized into functional modules

Modules are organized into a functional meta-network

Applications

- 1) Context-specific annotation for genes expressed in the human brain ("guilt-by-association")
 - Rationale: genes with the strongest evidence of membership for the same module are likely to be driven by the same underlying factors

Sample

Cortex_95

Sample

Caudate nucleus

Cerebellum

4

Sample

M6A: *PVALB*+ interneurons

Applications

- 1) Context-specific annotation for genes expressed in the human brain ("guilt-by-association")
- 2) *In silico* comparisons of cellular specificity of gene expression across brain regions
 - Rationale: genes with the most significant differences in membership for cell-type modules between brain regions imply differences in the cellular specificity and/or consistency of gene expression

Applications

- 1) Context-specific annotation for genes expressed in the human brain ("guilt-by-association")
- 2) *In silico* comparisons of cellular specificity of gene expression across brain regions
- 3) Cellular phenotype discovery
 - Rationale: unsupervised analysis of gene coexpression patterns can identify novel distinctions among cell types within brain regions

Caudate nucleus

¹ Cahoy, J.D. *et al. J Neurosci* **28**: 264-78 (2008)

² Lein, E.S. et al. Nature 445: 168-76 (2007)

³ Bachoo, R.M. et al. PNAS **101**: 8384-8389 (2004)

M13C (CN) identifies genes that are coexpressed in the SVZ

ALDH1L1 (M13C): RMM=3,104, p=1.2e-01

Conclusions

- The human brain transcriptome is organized into modules of coexpressed genes
 - Many modules are reproducible across microarrays, individuals, and brain regions
- Several highly conserved modules are enriched for markers of major cell classes
 - 'Core' transcriptional programs for neurons, oligodendrocytes, astrocytes, and microglia
 - Context-specific annotation for thousands of genes expressed in the human brain
- Potential to leverage consistency of k_{me} for comparisons with other conditions of interest (e.g. disease)

Acknowledgements

Dan Geschwind Steve Horvath Gena Konopka Peter Langfelder

Collaborators: Dr. Kazuya Iwamoto Dr. Tadafumi Kato

The Geschwind lab