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Important Task in 
Many Genomic Applications:
Given a network (pathway) of 

interacting genes (proteins) how 
to find the central players?



Which of the following mathematicians 
had the biggest influence on others?

Connectivity can 
be an important 
variable for 
identifying 
important nodes



Network Construction
Bin Zhang and Steve Horvath (2005) "A General Framework 

for Weighted Gene Co-Expression Network Analysis", Statistical 
Applications in Genetics and Molecular Biology: Vol. 4: No. 1, 

Article 17.



Network=Adjacency Matrix

• A network can be represented by an 
adjacency matrix, A=[aij], that encodes 
whether/how a pair of nodes is 
connected. 
– A is a symmetric matrix with entries in [0,1] 

– For unweighted network, entries are 1 or 0 
depending on whether or not 2 nodes are 
adjacent (connected)

– For weighted networks, the adjacency matrix 
reports the connection strength between 
gene pairs



Generalized Connectivity

• Gene connectivity = row sum of the adjacency 
matrix

– For unweighted networks=number of direct neighbors

– For weighted networks= sum of connection strengths 
to other nodes

i ijj
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Steps for constructing a
co-expression network

A) Microarray gene expression data 
B) Measure concordance of gene 

expression with a Pearson 
correlation

C) The Pearson correlation matrix is 
either dichotomized to arrive at an 
adjacency matrix � unweighted
network 

Or transformed continuously with the 
power adjacency function �
weighted network



Power adjacency function results 
in a weighted gene network

| ( , ) |
ij i j
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Often choosing beta=6 works well but in general we use the 
“scale free topology criterion” described in Zhang and 
Horvath 2005.



Comparing adjacency functions

Power Adjancy vs Step Function



Comparing the power adjacency 

function to the step function

• While the network analysis results are usually 

highly robust with respect to the network 

construction method there are several 

reasons for preferring the power adjacency 

function.

– Empirical finding: Network results are highly 
robust with respect to the choice of the power beta

– Theoretical finding: Network Concepts make more 
sense in terms of the module eigengene.



Define a Gene Co-expression Similarity 

Define a Family of Adjacency Functions 

Determine the AF Parameters

Define a Measure of Node Dissimilarity

Identify Network Modules (Clustering) 

Relate Network Concepts to Each Other 

Relate the Network Concepts to 

External Gene or Sample Information

Focus of 

this talk:



Integrating Genetic and Network Analysis to 
Characterize Genes Related to Mouse Weight

A Ghazalpour, S Doss, B Zhang, C Plaisier, S Wang,  EE Schadt, T Drake, 
AJ Lusis, S Horvath. PLoS Genetics August 2006



F2 mouse cross data

• We applied the network construction 
algorithm to a subset of gene expression data 
from an F2 intercross between inbred strains 
C3H/HeJ and C57BL/6J. 

• Used liver gene expression data from 135 
female mice (very different from male mice!)

• Goal: Characterize genes whose 
expression profile are correlated with 
body weight

• Statistical Method: Integrate network 
concepts with genetic concepts in a 
multivariate linear regression model



Defining Gene Modules
=sets of tightly co-regulated genes



Module Identification based on the 
notion of topological overlap

• One important aim of metabolic network analysis 
is to detect subsets of nodes (modules) that are 
tightly connected to each other. 

• We adopt the definition of Ravasz et al (2002): 
modules are groups of nodes that have high 
topological overlap.



Topological Overlap leads to 

a network distance measure

• Generalized in Zhang and Horvath (2005) to 

the case of weighted networks

• Generalized in Yip and Horvath (2006) to 

higher order interactions
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Using the topological overlap 
dissimilarity matrix to cluster genes 

• To group nodes with high topological overlap into modules (clusters), 
we use average linkage hierarchical clustering coupled with the TOM 
dissimilarity measure.  

• Modules correspond to branches of the dendrogram
• Once a dendrogram is obtained from a hierarchical clustering method, 

modules correspond to cut-off branches.
– we use the “dynamic tree cut algorithm” since it allows for a flexible choice 

of height cut-offs.



Module plots for female liver expression data



Mouse body weight gives rise to a gene 
significance measure

• Abstract definition of a gene significance 
measure: 

– GS(i) is non-negative, 

– the bigger, the more *biologically* significant

– Example: GS(i)=-log(p-value)

But here we use 

• GSweight(i) = |cor(x(i), weight)| 

– where x(i) is the gene expression profile of the ith
gene. 



A gene significance measure 
naturally gives rise to a module 
module significance measure

• Module Significance=mean gene 
significance



The blue module has high module 
significance with respect to body weight, 
i.e. it is highly enriched with genes that 

are correlated with weight
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Relating the blue module genes 

to 22 physiological traits
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Message: unsupervised module 

detection method found a biologically 

interesting module

• The network modules were defined without 
regard to a physiological trait (unsupervised 
clustering of genes)

• The blue module is comprised of genes that 
relate to physiologically interesting traits, in 
particular body weight.

• Gene ontology: The blue module is enriched for 
genes in the ‘extra-cellular matrix (ECM) 
receptor interaction’ (p=2.3x10-9) and 
‘complement and coagulant cascades’
(p=1.0x10-6) pathways. 



Since highly connected `hub’ genes have 
been found to be biologically important in 
other applications, it is natural to ask 
whether GSweight is related to 
intramodular connectivity in the blue 
module.
Further it is interesting to study the 
relationship between GSweight and k in 
different gender/tissue combinations.



Relating blue module connectivity to weight-based gene significance

in different gender/tissue combinations.

Message: there is a highly significant relationship between GSweight and k 

In the female liver network which cannot be found in other combinations.



Understanding the genetic drivers 

of the module genes
• Since genetic marker data were available for 

each mouse, it is natural to relate blue module 
gene expressions to the SNP markers. This 
could help identify the genetic drivers of the blue 
module pathway.

• Using 1065 single nucleotide polymorphism 
(SNP) markers that were evenly spaced across 
the genome (~1.5 cM density), we mapped the 
gene expression values and plotted the 
distribution of the expression quantitative trait 
loci (eQTL) for all genes within each gene 
module.



Comparing eQTL hotspots between the 3421 most 

connected genes (black) and the module genes (blue)



Module QTLs=mQTL
=chromosomal location that affects 

module gene expressions.

• we hypothesized that there might also be 
genomic hot spots which coordinately regulate 
the transcript levels of the genes within each 
module. 

• New Terminology:

• Module QTL (mQTL)=genomic “hotspot” that 
regulates transcript levels of the module genes.  



Comparing the body weight LOD score curve (black curve)
to distribution of module eQTLs (blue bars) of the blue module

Blue bar=
No. of genes whose 
expression LOD score 
at the marker >2
Red stars label mQTLs

Message:

While there is some 

overlap

between the mQTLs and

clinical traits (chromosome 

19) there are also 

pronounced differences: 

see the blue spike 

(mQTL2) on chromosome 

2. 



A SNP marker naturally gives rise to 
a measure of gene significance

• Additive SNP marker coding: AA->2, AB->1, BB->0
• Absolute value of the correlation ensures that this is 

equivalent to AA->0, AB->1, BB->2
• Dominant or recessive coding may be more appropriate 

in some situations
• Conceptually related to a LOD score at the SNP marker 

for the i-th gene expression trait

GS.SNP(i) = |cor(x(i), SNP)|.



Using mQTLs to define gene 
significance measures

GSmQTL2(i) = |cor(x(i), mQTL2)|

GSmQTL5(i) = |cor(x(i), mQTL5)|

GSmQTL10(i) = |cor(x(i), mQTL10)|

GSmQTL19(i) = |cor(x(i), mQTL19)|
We also find it useful to define the following summary covariate

since it is highly significant in our multivariate linear 

regression model
GSmQTL*(i)=GSmQTL2+GSmQTL5+GSmQTL10



Multivariate Linear Regression Models for GSweight

<2E−1623.860.636Kme

<2E−1614.870.552GSmQTL19 

<2E−16−14.00−0.304GSmQTL* 0.70GSweight ~ 

kme + 

GSmQTL* + 

GSmQTL19

Model 3: 

Network + 

Genetics

————

————

<2E−1616.510.643Kme0.34GSweight ~ 

kme

Model 2: 

Network 

View

————

<2E−1612.300.652GSmQTL19 

5.00E−15−8.05−0.250GSmQTL* 0.37GSweight ~ 

GSmQTL* + 

GSmQTL19

Model 1: 

Genetic 
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The integrated model allows us to 
characterize genes that are related to weight
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Here the blue module genes are binned into 2^3=8 bins created by dichotomizing

the covariates GSmQTL* (high=q+,low=q-), GSmQTL19(high19+), k(high=k+).  (splits 

were chosen by the median)



Discussion
The multivariate regression models in the Table 
highlight the value of taking a network perspective. 
Model 3 integrates co-expression network concepts 
(connectivity) and genetic marker information 
(GSmQTL) to explain 70% of the variation in 
GSweight. 

• This simple model is attractive since it illustrates 
that 3 biologically intuitive variables suffice to 
explain which genes of this pathway are related to 
body weight.

• Integrating gene co-expression networks with 
genetic marker information allows one to 
understand what factors influence the relationship 
between gene expression and weight.



Comparing our analyses to standard 
approaches

• Instead of modelling the relationship 
bodyweight~SNPs
we find it advantageous to model

• GSweight~GS.mQTL+connectivity.

• While traditional mapping would take the mice as 
unit of observation, we consider the genes of a 
physiologically interesting network module.

• Major reason: intramodular connectivity turns out 
be a highly significant independent predictor.

• Related to modeling 
– weight~mQTL+module eigengene



The advantages of a correlation 

based analysis
We define simple and intuitive concepts that are based on the 

Pearson correlation (connectivity, GSweight, GSmQTL).
For example, GSmQTL19 measures to what extent a gene “maps” to the 

chromosome 19 location and it is highly related to a single point LOD score.

Using the same association measure (Pearson correlation) puts the 
disparate data sets (gene expression, physiological traits and 
SNPs) on the same footing and highlights that these very 
different data sets can be naturally integrated using weighted 
gene co-expression network methodology.

For example, a complex trait can be considered as “idealized” gene 
in a co-expression network. Thus the gene significance 
GSweight(i)^beta can be interpreted as adjacency between 
body weight and the i-th gene expression.

• A mathematical advantage of the Pearson correlation is that it allows 
one to study the relationship between the network concepts in terms 
of the module eigengene, see Horvath, Dong, Yip (2006).



Software and Data Availability

• This ppt presentation and detailed 
software tutorials can be found at the 
following webpage

• http://www.genetics.ucla.edu/labs/horvath/
CoexpressionNetwork/MouseWeight/
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