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Chronic Fatigue SyndromeChronic Fatigue Syndrome
6 Months or more of 
medically unexplained 
severe fatigue + 4 of the 
following symptoms:

Post exertional fatigue lasting > 24 hrs
Unrefreshing sleep  
Difficulty concentrating or remembering 
Headaches unusual in frequency or duration 
Muscle pain 
Joint pain 
Sore throat 
Tender lymph nodes
(Fukuda et al. 1994)
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OutlineOutline
1. Demonstrate a weighted gene co-expression 

network analysis (WGCNA)
a. Screen for ~20 candidate genes to consider for follow up 

analysis using:
i. SNP
ii. Severity  
iii. Module connectivity 

b. Check for biological relevance of module and candidate 
genes using gene ontology software.

2. Conduct a standard microarray analysis using the 
false discovery rate and ignoring the SNP data.

Identify ~20 candidate genes and annotate.

3. Compare standard analysis with WGCNA.



DNA Level: ~ 36 Pre-selected autosomal SNP’s

Organism Level: ~ 70 Clinical Traits 

mRNA Level: ~ 20K genes/array

Analyzed the following subset of data: 
1.) 127 fatigued samples
2.) 8966 genes with high mean and variance 

Chronic Fatigue data set Chronic Fatigue data set 
164 Samples with the following data:  
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Selecting a clinical traitSelecting a clinical trait

• Scores from diagnostic procedures used to evaluate quality of 
life: 
• Medical Outcomes Survey Short Form (SF-36) 
• Multidimensional Fatigue Inventory (MFI)
• CDC Symptom Inventory Case Definition scales

• Reeves et al. (2005) clustered these 14 scores from 118 patients
and identified three clusters of CFS severity: high, moderate and 
low.

 Out of 70 clinical scores, we chose to use this CFS severity trait.
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Selecting a SNP markerSelecting a SNP marker
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• Selected “TPH2 SNP”: 

rs10784941 (12q21) from the 
TPH2 gene because:
• Previously found to be associated 

with chronic fatigue (Goertzel et 
al. 2006)

• Had significant correlation with 
CFS severity (p-value = 0.0099).

• CDC provided 36 autosomal SNPs from 8 candidate CFS 
genes: TPH2, POMC, NR3C1, CRHR2, TH, SLC6A4, CRHR1, 
COMT  (Smith et al. 2006)
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Constructing a weighted Constructing a weighted 
gene cogene co--expression expression 

networknetwork
1. Construct a Pearson correlation 

matrix from microarray data:              
xi and xj  r(xi,xj)

2. Transform via an adjacency function:  
• Step function: aij = I r(xi, xj)> τ

Unweighted network
• Power function: aij = r(xi, xj)β

Weighted network
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Five modules identified using Five modules identified using 
hierarchical clusteringhierarchical clustering

• Grey colors indicate genes outside of any module.

• MDS plot indicates separation of blue, green, brown, turquoise 
and yellow modules.  

a) Gene Network b) MDS view
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The blue module relates to severityThe blue module relates to severity
GS.severity(i) = |cor(x(i), severity)|, where GS = “Gene 
Significance” and x(i) is the gene expression profile of the ith
gene. Can also define:

Module.Significance(k) = 
E(GS.severity(i) genes in module k)

Blue module 
(299 genes)         
has highest Module 
Significance 

Severity Module 
Significance 
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Correlate gene expression data with Correlate gene expression data with 
TPH2TPH2 SNPSNP

• Additive SNP marker coding: AA = 2, AB = 1, BB = 0

• Absolute value of the correlation ensures that this is 
equivalent to AA = 0, AB = 1, BB = 2

• Dominant or recessive coding is more appropriate for 
most Mendelian diseases 

GS.SNP(i) = |cor(x(i), TPH2 SNP)
where x(i) is the i-th gene expression 

• Integration of WGCNA with genetic marker data: 
IWGCNA
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Why Consider Gender Differences?Why Consider Gender Differences?

• We chose to investigate sex differences for the 
following reasons:
1. CFS is 4x more prevalent in women. (Reyes et al. 2003)
2. Possible that prevalence difference due to genetic 

differences between genders. 
3. Women outnumber men 3:1 in this data set (98 females, 29 

males).

• If no gender difference, analyze male and female 
arrays together.

• If gender differences, exclude some female samples 
with expression patterns that differ most from module 
eigengene.
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The blue module is related to severity in The blue module is related to severity in 
males, several modules relate in femalesmales, several modules relate in females

Module Significance
Males                                              Females



Homogenization of Female SamplesHomogenization of Female Samples
• Based on the idea that blue module is related to severity. Uses 

first principal component of blue  module: “module eigengene”
(ME) summary measure. 

• MEblue > median(MEblue) and high severity (severity > 1) OR
MEblue < median(MEblue) and low severity (severity < 3).

• Reduced female samples from 64 to 53.

• Increased the module significance from 0.22 (p-value = 0.074) 
to 0.47 (p-value = 0.00016).  

Severity - All Females                 Severity - Homogenized Females
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GenderGender--stratified network viewsstratified network views

1. Calculate connectivity for a gene x(i):  kME(i) = |cor(MEblue,x(i))|
2. Blue module connectivity (membership) is highly preserved 

between genders
3. Less preservation for GS.severity
 Due to GS.severity gender difference, it is useful to impose 

screening criteria in both males and females separately.

M vs. F : kME & GSseverity

M vs. FH : kME & GSseverity
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Gene screening procedureGene screening procedure

Screening criteria imposed in both males and 
homogenized females:

1) High connectivity within blue module (kME in top 
2/3rd’s)

2) Association with severity trait (GSseverity > .2 in males 
and GSseverity > .35 in homogenized females)

3) Association with TPH2 SNP (top 50%)

⇒ 20 Genes met these criteria



• 12/16 genes were a) verified as interacting and b) estimated to function in a 
hematological disease pathway by Ingenuity Pathways Analysis (IPA) 
software

• Viral function, hematological disease and connective tissue are consistent 
with previous findings.

IWGCNA Candidate GenesIWGCNA Candidate Genes





Ingenuity pathways analysis results for Ingenuity pathways analysis results for 
IWGCNA genesIWGCNA genes

Light blue = 20 candidate genes

Centrality of 
candidate gene 
pathway 
reflects use of 
connectivity in 
gene screening 
strategy. 

Dark blue = 299 module genes 
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Repeat IPA with Repeat IPA with TPH2 TPH2 gene: gene: 
Does including Does including TPH2TPH2 SNP in screening procedure SNP in screening procedure 

result in genes that interact with result in genes that interact with TPH2TPH2??

 Yes, it is part of the large pathway.
 The p-value improves slightly and the functions 

stay the same. 

IPA #1: 
Without 
TPH2

IPA #2: 
With 
TPH2
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Pathways are very similarPathways are very similar
20 + TPH2 20 only
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Results from previous CFS studies  Results from previous CFS studies  
1. Associated with other conditions: fibromyalgia, connective tissue 

disease and mitochondrial deficiency (Bains 2008; Hench 1989)
2. Affects the endocrine, muscular and immune systems and some 

cases may be triggered by viruses (Lloyd et al. 1991; Holmes et 
al. 1987; Torpy and Chrousos 1996; Kaushik et al. 1987)

3. Evidence for immune and hypothalamic-pituitary-adrenal (HPA) 
axis abnormalities have been observed at the symptom, 
molecular and genetic level of CFS patients (Klimas and Koneru
2007)

4. Higher cytotoxic T-cell counts and impaired T-cell function in CFS 
patients (Rasmussen et al. 1994; Patarca 2001)

5. Evidence for higher rates of immune cell apoptosis in CFS 
patients, specifically neutrophils and peripheral blood 
lymphocytes (Vojdani et al. 1997; Kennedy et al. 2004)
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OutlineOutline
1. Demonstrate a weighted gene co-expression 

network analysis (WGCNA)
a. Screen for ~20 candidate genes to consider for follow up 

analysis using:
i. SNP
ii. Severity  
iii. Module connectivity 

b. Check for biological relevance of module and candidate 
genes using gene ontology software.

2. Conduct a standard microarray analysis using the 
false discovery rate and ignoring the SNP data.
• Identify ~20 candidate genes and annotate.

3. Compare standard analysis with WGCNA.
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Standard analysis results in 29 Standard analysis results in 29 
candidate genescandidate genes

• Starting from 8966 most varying genes, computed p-values for Pearson 
correlation test of gene expression profiles with severity.

• For each p-value, we computed the corresponding local false discovery rate 
(q-value) using the qvalue package in R.

• 346 genes achieved minimum fdr = 0.081; and 241 eligible for IPA network 
construction. Top 3 IPA pathways:

1. Viral Function, Molecular Transport, RNA Trafficking (p-value ~ 10[−52], focus 
molecules = 29) 

2. Connective Tissue Development and Function, Cell Signaling, Molecular Transport 
(p-value ~ 10[−31], focus molecules = 20)

3. Cell Morphology, Cellular Assembly and Organization, Cancer (p-value ~ 
10[−29],focus molecules = 19)

 Selected 29 genes from Viral Function pathway as candidate genes for 
standard analysis.
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IPA of 29 standard analysis genes IPA of 29 standard analysis genes 
with and without with and without TPH2TPH2

 TPH2 is not involved in either network.

 Analysis of 29 genes alone results in 2 networks.
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OutlineOutline
1. Demonstrate a weighted gene co-expression 

network analysis (WGCNA)
a. Screen for ~20 candidate genes to consider for follow up 

analysis using:
i. SNP
ii. Severity  
iii. Module connectivity 

b. Check for biological relevance of module and candidate 
genes using gene ontology software.

2. Conduct a standard microarray analysis using the 
false discovery rate and ignoring the SNP data.
• Identify ~20 candidate genes and annotate.

3. Compare standard analysis with WGCNA.
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IPA network comparison between 20 IPA network comparison between 20 
IWGCNA and 29 standard analysis genesIWGCNA and 29 standard analysis genes

• No overlap between 
these two lists.

• But, overlap between 
Hematological 
Disease and Viral 
Function networks.

Light blue = 20 IWGCNA genes Dark blue = 29 standard genes 
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Correlation results: IWGCNA vs. Correlation results: IWGCNA vs. 
standard analysisstandard analysis

• r(IWGCNA,TPH2 SNP) > r(Std,TPH2 SNP)

• r(IWGCNA,MEblue) > r(Std,MEblue)

• r(Std,Severity) > r(IWGCNA, Severity)
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ConclusionsConclusions
1. Weighted gene co-expression networks:

a) Useful for selecting patient samples with similar gene expression 
profiles.

b) Can be easily integrated with genetic marker, clinical, and other types 
of data.

2. Both IWGCNA and a standard analysis of CFS microarray data 
identify clinically interesting pathways and genes.  

3. While the 20 and 29 cg lists do not overlap, IPA finds overlap 
between networks.

4. Integrating genotypes from a SNP marker with WGCNA identifies 
candidate genes that: 
• Functionally interact with the SNP-containing gene
•

5. Whereas a standard analysis excluding SNP data does not find 
expression correlations with the SNP genotypes nor does the SNP-
containing gene interact with these candidate genes.



WGCNA Software: WGCNA Software: 
stand alone and R packagestand alone and R package

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork
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