Integrated WGCNA with an application to chronic fatigue syndrome

Methodology article Open Access (Highly accessed)

Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome

Angela P Presson, Eric M Sobel, Jeanette C Papp, Charlyn J Suarez, Toni Whistler, Mangalathu S Rajeevan, Suzanne D Vernon, Steve Horvath

BMC Systems Biology 2008, 2:95 (6 November 2008) [Abstract] [Provisional PDF] [PubMed] [Related articles]

Angela Presson, Steve Horvath

Department of Biostatistics Department of Human Genetics University of California, Los Angeles

Chronic Fatigue Syndrome

6 Months or more of medically unexplained severe fatigue + 4 of the following symptoms:

Post exertional fatigue lasting > 24 hrs Unrefreshing sleep Difficulty concentrating or remembering Headaches unusual in frequency or duration Muscle pain Joint pain Sore throat Tender lymph nodes (Fukuda et al. 1994)

Outline

- 1. Demonstrate a weighted gene co-expression network analysis (WGCNA)
 - a. Screen for ~20 candidate genes to consider for follow up analysis using:
 - i. SNP
 - ii. Severity
 - iii. Module connectivity
 - b. Check for biological relevance of module and candidate genes using gene ontology software.
- 2. Conduct a standard microarray analysis using the false discovery rate and ignoring the SNP data. Identify ~20 candidate genes and annotate.
- 3. Compare standard analysis with WGCNA.

Chronic Fatigue data set

164 Samples with the following data:

Selecting a clinical trait

- Scores from diagnostic procedures used to evaluate quality of life:
 - Medical Outcomes Survey Short Form (SF-36)
 - Multidimensional Fatigue Inventory (MFI)
 - CDC Symptom Inventory Case Definition scales
- Reeves et al. (2005) clustered these 14 scores from 118 patients and identified three clusters of CFS severity: high, moderate and low.
- Out of 70 clinical scores, we chose to use this CFS severity trait.

Selecting a SNP marker

- CDC provided 36 autosomal SNPs from 8 candidate CFS genes: TPH2, POMC, NR3C1, CRHR2, TH, SLC6A4, CRHR1, COMT (Smith et al. 2006)
- Selected "TPH2 SNP": rs10784941 (12q21) from the TPH2 gene because:
 - Previously found to be associated with chronic fatigue (Goertzel et al. 2006)
 - Had significant correlation with CFS severity (p-value = 0.0099).

Figure 1

A Array Data

Constructing a weighted gene co-expression network

- 1. Construct a Pearson correlation matrix from microarray data: x_i and $x_j \rightarrow r(x_i, x_j)$
- 2. Transform via an adjacency function:
 - Step function: $a_{ij} = I_{r(xi, xj) > \tau} \rightarrow$ Unweighted network
 - Power function: $a_{ij} = r(x_i, x_j)^{\beta} \rightarrow$ Weighted network

Five modules identified using hierarchical clustering

- Grey colors indicate genes outside of any module.
- MDS plot indicates separation of blue, green, brown, turquoise Biostatistics and yellow modules.

The blue module relates to severity

GS.severity(i) = |cor(x(i), severity)|, where GS = "GeneSignificance" and x(i) is the gene expression profile of the ith gene. Can also define:

Module.Significance(k) = E(GS.severity(i) genes in module k)

Blue module

(299 genes)

Significance

Correlate gene expression data with TPH2 SNP

Integration of WGCNA with genetic marker data:
 IWGCNA

GS.SNP(i) = |cor(x(i), TPH2 SNP)|

where *x*(*i*) is the *i*-th gene expression

- Additive SNP marker coding: AA = 2, AB = 1, BB = 0
- Absolute value of the correlation ensures that this is equivalent to AA = 0, AB = 1, BB = 2
- Dominant or recessive coding is more appropriate for most Mendelian diseases

Why Consider Gender Differences?

- We chose to investigate sex differences for the following reasons:
 - 1. CFS is 4x more prevalent in women. (Reyes et al. 2003)
 - 2. Possible that prevalence difference due to genetic differences between genders.
 - 3. Women outnumber men 3:1 in this data set (98 females, 29 males).
- If no gender difference, analyze male and female ۲ arrays together.
- If gender differences, exclude some female samples with expression patterns that differ most from module eigengene. Biostatistics

The blue module is related to severity in males, several modules relate in females

Module Significance

Females

turquoise yellow

grey

Homogenization of Female Samples

- Based on the idea that blue module is related to severity. Uses first principal component of blue module: "module eigengene" (ME) summary measure.
- $\begin{array}{l} \mathsf{ME}_{\mathsf{blue}} > \mathsf{median}(\mathsf{ME}_{\mathsf{blue}}) \ \mathsf{and} \ \mathsf{high} \ \mathsf{severity} \ (\mathsf{severity} > 1) \ \mathsf{OR} \\ \mathsf{ME}_{\mathsf{blue}} < \mathsf{median}(\mathsf{ME}_{\mathsf{blue}}) \ \mathsf{and} \ \mathsf{low} \ \mathsf{severity} \ (\mathsf{severity} < 3). \end{array}$ ۲
- Reduced female samples from 64 to 53. **Severity - All Females**

Severity - Homogenized Females

Increased the module significance from 0.22 (p-value = 0.074) ۲ to 0.47 (p-value = 0.00016).

- 1. Calculate connectivity for a gene x(i): $k_{ME}(i) = |cor(MEblue, x(i))|$
- 2. Blue module connectivity (membership) is highly preserved between genders
- 3. Less preservation for GS.severity
- Due to GS.severity gender difference, it is useful to impose Biostatistics screening criteria in both males and females separately.

Gene screening procedure

Screening criteria imposed in both males and homogenized females:

- 1) High connectivity within blue module (k_{ME} in top 2/3rd's)
- 2) Association with severity trait (GS_{severity} > .2 in males and GS_{severity} > .35 in homogenized females)
- 3) Association with TPH2 SNP (top 50%)
 - ⇒ 20 Genes met these criteria

IWGCNA Candidate Genes

- 12/16 genes were a) verified as interacting and b) estimated to function in a hematological disease pathway by Ingenuity Pathways Analysis (IPA) software
- Viral function, hematological disease and connective tissue are consistent with previous findings.

Γ	Cone Name and	ne Name and Full gene name. Entrez Gene and/or Ingenuity Pathways Gene Annotation				ality
Genbank Accession GeneRIFs description. Chromoso			a) 16 out of 20 Candidate b) 212 out of 299 Modu		LEO score ¹³	Rank in
	Companie Accession	Location	Genes	Genes	220 30010	Module
		Forkhead box N1. Mutations result in a		o 11 = 11 ^{- 5} - 5 - 1		
	FOXN1 (NM_003593)	severely compromised immune system, 1-cell	Hematological Disease	Cell Function Rank =		
		immunodeficiency, skin disorder congenital	Rank = 1, p-value ≈ 10 ⁻³²	8, p-value ≈ 10 ⁻¹⁰	0.00	0
		alopecia. 1/q11-q12		Endocrino Disordors/	0.82	0
		Peroxiredoxin 3. Antioxidant function,				
	PRDX3 (AF118073)	regulates abundance of H ₂ U ₂ , which promotes	Hematological Disease'	Inflammation		
		apoptosis. 10q25-q26		Rank = <u>6, p</u> -value ≈ 10 ⁻²⁰	0.77	8
		Succinate-CoA ligase, ADP-forming, beta	1	Cell Cycle ⁷ Rank		
	SUCLA2 (AK001458)	subunit. Defects associated with	Hematological Disease'	= 5 p-value $\approx 10^{-22}$		
		encephalomyopathy. 13q12.2-q13.3	1		0.77	9
┟	TFB2M (AK026314)	Transcription factor B2, mitochondrial. 1q44	Hematological Disease'	ICell Cvcle'	0.69	18
	MED8 (BC010019)	Mediator complex subunit 8	Hematological Disease ¹	Amino Acid Met.°		
				Rank = 1, p-value ≈ 10 ⁻⁴⁵ ■	0.82	7
	SNURF (AF101044)	SNRPN upstream reading frame. Alternative splicing/deletion leads to Angelman syndrome	Hematological Disease ¹	Amino Acid Met. ⁸		
					0.53	36
	DCTN2 (NM_006400)	Dynactin 2 (p50). Required in peroxisome biogenesis, 12g13,2-g13,3	Hematological Disease ¹	Amino Acid Met. ⁸		
					0.30	66
	PGK1 (AB062432)	Phosphoglycerate kinase 1. Glycolysis. Xq13	Hematological Disease ¹	Am <mark>ino Acid Met.⁸</mark>	-0.28	132
	PRKCH (BC001000)	Protein kinase C, eta. Regulates keratinocyte differentiation. 14q22-q23	Hematological Disease ¹	Connective Tissue ⁹ Rank = 2. p-value ≈ 10 ⁻⁴⁴	-0.13	116

RYK (NM_002958)	RYK receptor-like tyrosine kinase. May play a role in the development of cleft lip and/or palate. 3q22	Hematological Disease ¹	Connective Tissue ⁹
VAMP5 (AF077197)	Vesicle-associated membrane protein 5 (myobrevin). Associated with myogenesis. 2p11.2	Hematological Disease ¹	Connective Tissue ¹⁰ Rank = 7, p-value ≈ 10 ⁻¹⁸
PBLD (AK027673)	Phenazine biosynthesis-like protein domain containing. 10pter-q25.3	Hematological Disease ¹	Connective Tissue ¹⁰
NPAL2 (AK024017)	NIPA-like domain containing 2. 8q22.2	Digestive System ² Rank = 2, p-value ≈ 10 ⁻³	Viral Function ¹¹ Rank = 3, p-value ≈ 10 ⁻³²
CD302 (BC020646)	C-type lectin receptor involved in cell adhesion and migration, as well as endocytosis and phagocytosis. 2q24.2	Carbohydrate Metabolism ³ Rank = 2, p-value ≈ 10 ⁻³	Viral Function ¹¹
PPP1R14C (AF407165)	Protein phosphatase 1, regulatory (inhibitor) subunit 14C. Enriched in brain, heart and skeletal muscle. 6q24.3-q25.3	Cancer ⁴ Rank = 2, p-value ≈ 10 ⁻³	Cell Proliferation ¹² Rank = 9, p-value ≈ 10 ⁻¹⁴
TMEM50A (AF081282)	Transmembrane protein 50A. May contribute to RH haplotype selection. 1p36.11	NA, Rank = 2	NA, <mark>R</mark> ank = 14
CRNKL1 (AF111802)	Crooked neck pre-mRNA splicing factor-like 1. 20p11.2	NA	NA
LTV1 (AK027815)	Protein coding. 6q24.2	NA	NA
AF090939	Discontinued record.	NA	NA
XM13557	Unmapped.	NA	NA

¹Cell Cycle, Cancer, Hematological Disease

²Digestive System D&F, Hepatic System D&F, Organ Dev.

³Carbohydrate Metabolism, Gene Expression, Genetic Disorder

⁴Cancer, Cellular Movement, Skeletal and Muscular Disorders

⁵Cell Fun. and Main., Small Molecule Biochem., Molecular Transport

⁶Endocrine System Disorders, Infectious Disease, Inflammatory Disease

⁷Cell Assembly and Org., Cell Cycle, DNA Replication/Recomb./Repair

⁸Post-Translational Modification, Amino Acid Metabolism, Molecular Transport
 ⁹Organ Morphology, Cell Morphology, Connective Tissue D&F
 ¹⁰Gene Expression, Cellular Development, Connective Tissue D&F
 ¹¹Viral Function, Cell. Assembly and Org., Cell Fun. and Maintenance

¹²Post-Translational Modification, Cancer, Cellular Growth/Proliferation

¹³LEO.NB.SingleMarker scores (converted to fold changes).

Ingenuity pathways analysis results for IWGCNA genes

Light blue = 20 candidate genes

Dark blue = 299 module genes

Centrality of candidate gene pathway reflects use of connectivity in gene screening strategy.

Repeat IPA with TPH2 gene: Does including TPH2 SNP in screening procedure result in genes that interact with TPH2?

	Δ	٢D	Molecules in Network	Score	Focus Molecule:	Top Functions
IPA #1: Without TPH2	1		C14ORF106, C8ORF4, CLPB, DCTN2 , ERK, FOXN1 , HNF4A, HSPD1 (includes EG:3329), L-triiodothyronine, MED8 , MGST3, MINA, MYC, NUDCD3, PAFAH1B1, PBLD , PGK1 , PRDX3 , PRKCH , PTK7, RPL41, RYK , SCOTIN, SLC25A19, SNURF , STRAP, SUCLA2 , TFB2M , TP53, TPRKB, UBA5, VAMP5 , YY2 (includes EG:404281), ZNF175, ZNHIT3	32	12	Cell Cycle, Cancer, Hematological Disease
	2		C70RF43, TMEM50A	3	1	
	3		NPAL2, ONECUT1	3	1	Digestive System
	4		CD302, HNF1A	3	1	Carbohydrate
	5		PP1, PP1/PP2A, PPP1R14C, PRKCG	3	1	Cancer, Cellular
IPA #2·	Δ 1	D	Molecules in Network	Score	Focus Molecule:	Top Functions
With TPH2	1		BLVRB, C14ORF106, C8ORF4, CLPB, DCTN2, EPO, ERK, FOXN1, HNF4A, L-triiodothyronine, MED8, MINA, MYC, NUDCD3, PAFAH1B1, PBLD, PGK1, POLR2A, PRDX3, PRKCH, RPL41, RYK, SCOTIN, SLC25A19, SNURF, STRAP, SUCLA2, TFB2M, TPS3, TPH2, TPRKB, UBA5, VAMP5, ZNF175, ZNHIT3	35	13	Cell Cycle, Cancer, Hematological Disease

- > Yes, it is part of the large pathway.
- The p-value improves slightly and the functions stay the same.

Pathways are very similar

Results from previous CFS studies

- 1. Associated with other conditions: fibromyalgia, connective tissue disease and mitochondrial deficiency (Bains 2008; Hench 1989)
- 2. Affects the endocrine, muscular and immune systems and some cases may be triggered by viruses (Lloyd et al. 1991; Holmes et al. 1987; Torpy and Chrousos 1996; Kaushik et al. 1987)
- 3. Evidence for immune and hypothalamic-pituitary-adrenal (HPA) axis abnormalities have been observed at the symptom, molecular and genetic level of CFS patients (Klimas and Koneru 2007)
- 4. Higher cytotoxic T-cell counts and impaired T-cell function in CFS patients (Rasmussen et al. 1994; Patarca 2001)
- 5. Evidence for higher rates of immune cell apoptosis in CFS patients, specifically neutrophils and peripheral blood lymphocytes (Vojdani et al. 1997; Kennedy et al. 2004)

- 1. Demonstrate a weighted gene co-expression network analysis (WGCNA)
 - a. Screen for ~20 candidate genes to consider for follow up analysis using:
 - i. SNP
 - ii. Severity
 - iii. Module connectivity
 - b. Check for biological relevance of module and candidate genes using gene ontology software.
- 2. Conduct a standard microarray analysis using the false discovery rate and ignoring the SNP data.
 - Identify ~20 candidate genes and annotate.
- 3. Compare standard analysis with WGCNA.

Standard analysis results in 29 candidate genes

- Starting from 8966 most varying genes, computed p-values for Pearson ٠ correlation test of gene expression profiles with severity.
- For each p-value, we computed the corresponding local false discovery rate ٠ (q-value) using the qvalue package in R.
- **346** genes achieved minimum fdr = 0.081; and 241 eligible for IPA network ٠ construction. Top 3 IPA pathways:
 - 1. Viral Function, Molecular Transport, RNA Trafficking (p-value ~ 10[-52], focus molecules = 29)
 - 2. Connective Tissue Development and Function, Cell Signaling, Molecular Transport $(p-value \sim 10[-31], focus molecules = 20)$
 - 3. Cell Morphology, Cellular Assembly and Organization, Cancer (p-value ~ 10[-29], focus molecules = 19)
- Selected 29 genes from Viral Function pathway as candidate genes for standard analysis. Biostatistics

IPA of 29 standard analysis genes with and without TPH2

Analysis of 29 genes alone results in 2 networks.

netv	vorks	s, clic	k Merge Networks.				BATS
	\triangle	ID	Molecules in Network	Score	Focus Molecule	e Top Functions	DGCR8
	1		ADFP, Akt, ANKRD6, AXIN2, BAT5, Bcl9-Cbp/p300-Ctnnb1-Lef/Tcf, CCDC92 (includes EG:80212), CEBPA, COL13A1, DGCR8, DMBT1, E2f, EDAR, EIF2C2, EPHX1, ERK, F3, FGF1, HNRNPA1, Hsp90, HSPG2, IHPK2, NFkB, NR5A2, NXF1, PDGF BB, PDPK1, PPARD, Ras, RNASEN, Rxr, SCAP, TCF4, VitaminD3-VDR-RXR, WNT16	71	25	Viral Function, Molecular Transport, RNA Trafficking	WITIG HINRIPA1 RNASEN EST UPK2 DMBT1
	2		ADARB2, ALDH18A1, ALPP, ARID5B, BAK1, BCKDK, BCL2A1, CHD2, DFFA, DHX30, FAIM, FAM120C, HIST2H2BE, KIAA1553, NFkB, PPP1R10, PRR6, RBAK, RREB1, RSBN1, SART1, SPTBN1, STOM, WDR33, ZFP106, ZMYND11, ZNF174, ZNF317, ZNF362, ZNF462, ZNF592, ZNF687, ZNF768, ZNHIT4, ZSCAN12	7	4	Amino Acid Metabolism, Hepatic System Disease, Liver Cholestasis	PDPS
	Δ	ID	Molecules in Network	Score	Focus Molecule:	Top Functions	SCAP
	1		ADFP, Akt, ANKRD6, AXIN2, BAT5, Bcl9-Cbp/p300-Ctnnb1-Lef/Tcf, CCDC92 (includes EG:80212), CEBPA, COL13A1, DGCR8, DMBT1, E2f, EDAR, EIF2C2, EPHX1, ERK, F3, FGF1, HNRNPA1, Hsp90, HSPG2, IHPK2, NFkB, NR5A2, NXF1, PDGF BB, PDPK1, PPARD, Ras, RNASEN, Rxr, SCAP, TCF4, VitaminD3-VDR-RXR, WNT16	71	25	Viral Function, Molecular Transport, RNA Trafficking	CEEPA
	2		ADARB2, ALDH18A1, ALPP, ARID5B, BAK1, BCKDK, BCL2A1, CHD2, DFFA, DHX30, FAIM, FAM120C, HIST2H2BE, KIAA1553, NFkB, PPP1R10, PRR6, RBAK, RREB1, RSBN1, SART1, SPTBN1, STOM, WDR33, ZFP106, ZMYND11, ZNF174, ZNF317, ZNF362, ZNF462, ZNF592, ZNF687, ZNF768, ZNHIT4, ZSCAN12	7	4	Amino Acid Metabolism, Hepatic System Disease, Liver Cholestasis	ADEP ViteminDEDDR.RXR ANKRDO
	з		EPO, TPH, TPH2, Tryptophan 5-monooxygenase	2	1	Behavior, Cardiac	Bcl9-Cbp/p300-0tmb1-Lef/Tcf

> TPH2 is not involved in either network.

- 1. Demonstrate a weighted gene co-expression network analysis (WGCNA)
 - a. Screen for ~20 candidate genes to consider for follow up analysis using:
 - i. SNP
 - ii. Severity
 - iii. Module connectivity
 - b. Check for biological relevance of module and candidate genes using gene ontology software.
- 2. Conduct a standard microarray analysis using the false discovery rate and ignoring the SNP data.
 - Identify ~20 candidate genes and annotate.
- 3. Compare standard analysis with WGCNA.

IPA network comparison between 20 IWGCNA and 29 standard analysis genes

Light blue = 20 IWGCNA genes

Dark blue = 29 standard genes

- No overlap between these two lists.
- But, overlap between Hematological Disease and Viral Function networks.

Correlation results: IWGCNA vs. standard analysis

0.9

0.8

0.6 0.7

0.5

3 0.4

o

- r(IWGCNA,TPH2 SNP) > r(Std,TPH2 SNP)
- r(IWGCNA,MEblue) > r(Std,MEblue)
- r(Std,Severity) > r(IWGCNA, Severity)

Correlation with Severity

Standard: 29 genes

0.35

0.30

0.25

0.20

0.15

IWGCNA: 20 genes

Correlation with the TPH2 SNP

Conclusions

- 1. Weighted gene co-expression networks:
 - a) Useful for selecting patient samples with similar gene expression profiles.
 - b) Can be easily integrated with genetic marker, clinical, and other types of data.
- 2. Both IWGCNA and a standard analysis of CFS microarray data identify clinically interesting pathways and genes.
- 3. While the 20 and 29 cg lists do not overlap, IPA finds overlap between networks.
- 4. Integrating genotypes from a SNP marker with WGCNA identifies candidate genes that:
 - Functionally interact with the SNP-containing gene
 - •
- 5. Whereas a standard analysis excluding SNP data does not find expression correlations with the SNP genotypes nor does the SNP-containing gene interact with these candidate genes.

WGCNA Software: stand alone and R package

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork

Acknowledgements

UCLA Human Genetics/Biostatistics

- Steve Horvath
- Eric Sobel
- Jeanette Papp
- Jason Aten
- Charlyn Suarez

Centers for Disease Control

- Suzanne Vernon
- Toni Whistler

- 1. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A: The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 1994, 121(12):953-9.
- 2. Reves M, Nisenbaum R, Hoaglin DC, Unger ER, Emmons C, Randall B, Stewart JA, Abbey S, Jones JF, Gantz N, Minden S, Reeves WC: Prevalence and incidence of chronic fatigue syndrome in Wichita, Kansas. Arch Intern Med 2003, 163(13):1530-1536.
- 3. Smith AK, White PD, Aslakson E, Vollmer-Conna U, Rajeevan MS: Polymorphisms in genes regulating the HPA axis associated with empirically delineated classes of unexplained chronic fatigue. Pharmacogenomics 2006, 7(3):387–94.
- 4. Goertzel BN, Pennachin C, de Souza Coelho L, Gurbaxani B, Maloney EM, Jones JF: Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome. Pharmacogenomics 2006, 7(3):475-83.
- 5. Bains W: Treating Chronic Fatigue states as a disease of the regulation of energy metabolism. Med Hypotheses 2008.
- 6. Hench PK: Evaluation and differential diagnosis of fibromyalgia. Approach to diagnosis and management. Rheum Dis Clin North Am 1989, 15:19–29.
- 7. Lloyd AR, Gandevia SC, Hales JP: Muscle performance, voluntary activation, twitch properties and perceived effort in normal subjects and patients with the chronic fatigue syndrome. Brain 1991,114 (Pt 1A):85–98. Biostatistics

References II

- 8. Torpy DJ, Chrousos GP: The three-way interactions between the hypothalamicpituitary-adrenal and gonadal axes and the immune system. Baillieres Clin Rheumatol 1996, 10(2):181–98.
- 9. Kaushik N, Fear D, Richards SC, McDermott CR, Nuwaysir EF, Kellam P, Harrison TJ, Wilkinson RJ, Tyrrell DA, Holgate ST, Kerr JR: Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome. J Clin Pathol 2005, 58(8):826-32.
- 10. Holmes GP, Kaplan JE, Stewart JA, Hunt B, Pinsky PF, Schonberger LB: A cluster of patients with a chronic mononucleosis-like syndrome. Is Epstein-Barr virus the cause? JAMA 1987,257(17):2297-302.
- 11. Klimas NG, Koneru AO: Chronic fatigue syndrome: inflammation, immune function, and neuroendocrine interactions. Curr Rheumatol Rep 2007, 9(6):482-7.
- 12. Rasmussen AK, Nielsen H, Andersen V, Barington T, Bendtzen K, Hansen MB, Nielsen L, Pedersen BK, Wiik A: Chronic fatigue syndrome-a controlled cross sectional study. J Rheumatol 1994, 21(8):1527-31.
- 13. Patarca R: Cytokines and chronic fatigue syndrome. Ann N Y Acad Sci 2001, 933:185-200.
- 14. Vojdani A, Ghoneum M, Choppa PC, Magtoto L, Lapp CW: Elevated apoptotic cell population in patients with chronic fatigue syndrome: the pivotal role of protein kinase RNA. J Intern Med 1997, 242(6):465–478.
- 15. Kennedy G, Spence V, Underwood C, Belch JJ: Increased neutrophil apoptosis in Biostatistics chronic fatigue syndrome. J Clin Pathol 2004, 57(8):891–3.