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Brain Cancer Microarray Data 

Weighted Gene Co-expression Network Analysis 

 R Tutorial 

 
Steve Horvath, Bin Zhang, Jun Dong, Tova Fuller, Peter Langfelder 

Correspondence: shorvath@mednet.ucla.edu,   http://www.ph.ucla.edu/biostat/people/horvath.htm 
 
This R tutorial describes how to carry out a gene co-expression network analysis with the R 
software.  
 
Content of this tutorial 

1) 1) Gene Co-expression Network Construction. We show how to construct unweighted 

networks using hard thresholding and how to construct weighted networks using soft 

thresholding. We describe a criterion (scale free topology criterion) for choosing the 

threshold. 

2) Module Definition Based on Average Linkage hierarchical clustering  

     with a tree cutting algorithm 

3) Relating modules to prognostic significance for cancer survival time 

   Keywords: gene significance, module significance 

4) Relating gene significance to intramodular connectivity. 

5) Generalizing intramodular connectivity to all genes on the array.  

Keyword: module eigengene based connectivity measure 

6) Comparing weighted network results to unweighted network results 

7) Studying the relationship between the clustering coefficicient and intramodular 

connectivity. 
 
To cite this tutorial or the statistical methods please use the following 2 references 
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Vol. 4: No. 1, Article 17 Technical Report and software code at: 
www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork. 
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in Glioblastoma Identifies ASPM as a Novel Molecular Target", PNAS | November 14, 2006 
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The following theoretical reference explores the meaning of coexpression network analysis 

• Horvath S, Dong J (2008) Geometric Interpretation of Gene Co-Expression Network 

Analysis. PloS Computational Biology. 4(8): e1000117. PMID: 18704157 

The WGCNA R package is described in 

• Langfelder P, Horvath S (2008) WGCNA: an R package for Weighted Correlation Network 

Analysis. BMC Bioinformatics. 2008 Dec 29;9(1):559. PMID: 19114008 

For the generalized topological overlap matrix as applied to unweighted networks see 

• Yip A, Horvath S (2007) Gene network interconnectedness and the generalized topological 

overlap measure. BMC Bioinformatics 8:22 
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Microarray Data  
The data and biological implications are described in Horvath et al 2006 
The data were provided by Stan Nelson, who directs the UCLA Microarray core. 
Expression of 22,215 probe sets (15,005 unique transcripts) was measured using Affymetrix HG-
U133A microarrays, as previously described(16). Data files (cel) were uploaded into the dCHIP 
program ( http://www.dchip.org/) and normalized to the median intensity array. Complete gene 
expression for datasets 1 and 2 available at:  
http://genetics.ucla.edu/labs/horvath/binzhang/Public/Networks/GBM_all_datasets.zip; ( dataset 1 
= gbm55old_dchipALL_cox.xls; dataset 2 = bm65new_dchipAll_cox.xls. Quantification was 
performed using model-based expression and the perfect match minus mismatch method 
implemented in dCHIP.  
More detailed descriptions and more detailed tutorials can be found at the following webpage: 
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/ASPMgene/ 
 
 
Methods Outline 
The network construction is conceptually straightforward: nodes represent genes and nodes are 
connected if the corresponding genes are significantly co-expressed across appropriately chosen 
tissue samples. Here we study networks that can be specified with the following adjacency matrix: 
A=[aij] is symmetric with entries in [0,1]. By convention, the diagonal elements are assumed to be 
zero. For unweighted networks, the adjacency matrix contains binary information (connected=1, 
unconnected=0). In weighted networks the adjacency matrix contains weights. 
 
The absolute value of the Pearson correlation between expression profiles of all pairs of genes was 
determined for the 8000 most varying non-redundant transcripts. Then, pioneering the use of a 
novel approach to the generation of a weighted gene coexpression networks, the Pearson 
correlation measure was transformed into a connection strength measure by using a power function 
(connection strength(i,j)=|correlation(i,j)|^β)(Zhang and Horvath 2005). The connectivity measure 
for each gene is the sum of the connection strengths (correlationβ) between that gene and all the 
other genes in the network. Gene expression networks, like virtually all types of biological 
networks, exhibit an approximate scale free topology. A linear regression model fitting index R2 
between log p(k) and log(k) was used to determine how well a resulting network fit scale free 
topology for a range of  values. The scale free topplogy criterion (Zhang and Horvath 2005) was 
used to determine the power,: specifically, a value of =6 was the lowest power that resulted in a 
scale free topology fit R^2 that was >0.9 (Supplementary Fig. 1).  
We will discuss the choice of this power in great detail below and provide several arguments that 
this choice of power results in a biologically meaningful network. 
Most biologists would be very suspicious of a gene co-expression network that does not satisfy 
scale-free topology at least approximately. Therefore, thresholds (or powers) that give rise to 
networks that do not satisfy approximate scale-free topology should not be considered. 
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Detection of hub genes: 
To identify hub genes for the network, one may either consider the whole network connectivity 
(denoted by kTotal) or the intramodular connectivity (kWithin). 
We find that intramodular connectivity is far more meaningful than whole network connectivity  
  
Relating hub gene status to gene (prognostic) significance: 
For each of the 55 glioblastoma samples patient survival information was available. Since some of 
the survival times were censored, we used a Cox proportional hazards model(21, 22) to define the 
prognostic significance of a gene by its univariate Cox regression p-value. More specifically we 
define the gene significance of each gene as minus log10 of the univariate Cox regression p-value. 
Thus high values of the gene significance imply that the gene expression is a significant predictor 
of patient survival, see Mischel et al 2005. 
 
Abstractly speaking, gene significance is any quantitative measure that specifies how biologically 
significant a gene is. One goal of network analysis is to relate the measure of gene significance 
(here –log10[Cox p-value]) to intramodular connectivity. 
 
Unweighted networks, hard thresholding 
Based on the expression data, the absolute pair-wise (Pearson) correlation coefficient between the 
expression profiles of each pair of genes is calculated. Then, a network with each node 
representing one gene is constructed. An edge between two nodes is present if their absolute 
correlation coefficient exceeds a threshold.  We obtain the threshold tau by using the scale-free 
criterion.  
 

Module Construction 
To group genes with coherent expression profiles into modules, we use average linkage hierarchical 
clustering, which uses the topological overlap measure as dissimilarity.  
The topological overlap of two nodes reflects their similarity in terms of the commonality of the 
nodes they connect to, see [Ravasz et al 2002, Yip and Horvath 2005]. 
Once a dendrogram is obtained from a hierarchical clustering method, we need to choose a height 
cutoff in order to arrive at a clustering. It is a judgement call where to cut the tree branches. 
The height cut-off can be found by inspection: a height cutoff value is chosen in the dendrogram 
such that some of the resulting branches correspond to the discrete diagonal blocks 
(modules) in the TOM plot. 
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# Absolutely no warranty on the code. Please contact SH with suggestions. 
 
# CONTENTS   
# This document contains function for carrying out the following tasks 
# A) Assessing scale free topology and choosing the parameters of the adjacency function 
#    using the scale free topology criterion (Zhang and Horvath 05) 
# B) Computing the topological overlap matrix  
# C) Defining gene modules using clustering procedures 
# D) Summing up modules by their first principal component (first eigengene) 
# E) Relating a measure of gene significance to the modules  
# F) Carrying out a within module analysis (computing intramodular connectivity)  
#    and relating intramodular connectivity to gene significance. 
# G) Miscellaneous other functions, e.g. for computing the cluster coefficient. 
 
# Downloading the R software 
# 1) Go to http://www.R-project.org, download R and install it on your computer 
# After installing R, you need to install several additional R library packages:  
# For example to install Hmisc, open R,  
# go to menu "Packages\Install package(s) from CRAN",  
# then choose Hmisc. R will automatically install the package.   
# When asked "Delete downloaded files (y/N)? ", answer "y". 
# Do the same for some of the other libraries mentioned below. But note that  
# several libraries are already present in the software so there is no need to re-install them. 
# To get this tutorial and data files, go to the following webpage 
# www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork 
# Download the zip file containing:  
# 1) R function file: "NetworkFunctions.txt", which contains several R functions  
#  needed for Network Analysis.  
# 2) The data file "gbm55old_dchip_14kALL_cox_8000mvgenes2.csv " 
# 3) Of course, this file: "GBMTutorialHorvath.txt" 
 
# Unzip all the files into the same directory. 
# Set the working directory of the R session by using the following command. 
# Note that we use / instead of \ in the path. 
setwd("C:/Documents and Settings/Steve Horvath/My 
Documents/ADAG/LinSong/NetworkScreening/GBM/GeneralFramework") 
 
#Please copy and paste the following script into the R session. 
#Text after "#" is a comment and is automatically ignored by R. 
 
# read in the R libraries 
library(MASS) # standard, no need to install 
library(class) # standard, no need to install 
library(cluster) 
library(impute)# install it for imputing missing value 
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# Download the WGCNA library as a .zip file from 

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/ 

and choose "Install package(s) from local zip file" in the packages tab 

 

library(WGCNA) 
options(stringsAsFactors=F) 
 
#read in the 8000 most varying genes (GBM microarray data) 
dat0=read.csv("gbm55old_dchip_14kALL_cox_8000mvgenes2.csv") 
# this contains information on the genes 
datSummary=dat0[,1:9] 
 
# the following data frame contains 
# the gene expression data: columns are genes, rows are arrays (samples) 
datExpr = t(dat0[,10:64]) 
 
no.samples = dim(datExpr)[[1]] 
dim(datExpr) 
rm(dat0);gc() 
 

 

 

# To choose a cut-off value, we propose to use the Scale-free Topology Criterion (Zhang and  
# Horvath 2005).  Here the focus is on the linear regression model fitting index  
# (denoted below by scale.law.R.2) that  quantify the extent of how well a network  
# satisfies a scale-free topology. 
# The function PickSoftThreshold can help one to estimate the cut-off value  
# when using hard thresholding with the step adjacency function. 
# The first column (different from the row numbers) lists the soft threshold Power  
# The second column reports the resulting scale free topology fitting index R^2 (scale.law.R.2) 
# The third column reports the slope of the fitting line.  
# The fourth column reports the fitting index for the truncated exponential scale free model.  
# Usually we ignore it. 
# The remaining columns list the mean, median and maximum connectivity. 
# To a soft threshold (power) with the scale free topology criterion: 
# aim for reasonably high scale free R^2 (column 2), higher than say .80 
# and negative slope (around -1, col 4). 
# In practice, we pick the threshold by looking for a "kink" in the  
# relationship between R^2 and power, see below. 
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#SOFT THRESHOLDING 

# Now we investigate soft thesholding with the power adjacency function 

powers1=c(seq(1,10,by=1),seq(12,20,by=2)) 

 

RpowerTable=pickSoftThreshold(datExpr, powerVector=powers1)[[2]] 

 

Power scale.law.R.2  slope truncated.R.2 mean.k. median.k. max.k. 

1      1       -0.0927  0.463         0.979 1640.00  1.60e+03 2700.0 

2      2        0.1880 -0.844         0.942  527.00  4.79e+02 1310.0 

3      3        0.7150 -1.410         0.967  214.00  1.74e+02  769.0 

4      4        0.8840 -1.650         0.974  102.00  7.22e+01  513.0 

5      5        0.9390 -1.710         0.977   54.90  3.25e+01  373.0 

6      6        0.9650 -1.660         0.983   32.50  1.58e+01  288.0 

7      7        0.9680 -1.610         0.980   20.80  8.09e+00  232.0 

8      8        0.9690 -1.550         0.977   14.10  4.36e+00  193.0 

9      9        0.9770 -1.490         0.983   10.10  2.43e+00  166.0 

10    10        0.9780 -1.460         0.984    7.48  1.42e+00  145.0 

11    12        0.9720 -1.400         0.981    4.52  5.22e-01  114.0 

12    14        0.9740 -1.360         0.982    2.97  2.08e-01   92.7 

13    16        0.9660 -1.340         0.971    2.08  8.94e-02   76.9 

14    18        0.9680 -1.330         0.980    1.52  4.00e-02   65.3 

15    20        0.9610 -1.320         0.972    1.14  1.87e-02   56.2 
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gc() 
cex1=0.7 
par(mfrow=c(1,2)) 
plot(RpowerTable[,1], -sign(RpowerTable[,3])*RpowerTable[,2],xlab=" 
Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n") 
text(RpowerTable[,1], -sign(RpowerTable[,3])*RpowerTable[,2], 
labels=powers1,cex=cex1,col="red") 
# this line corresponds to using an R^2 cut-off of h 
abline(h=0.95,col="red") 
plot(RpowerTable[,1], RpowerTable[,5],xlab="Soft Threshold (power)",ylab="Mean 
Connectivity", type="n") 
text(RpowerTable[,1], RpowerTable[,5], labels=powers1, cex=cex1,col="red") 
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# Note that at power=6, the curve has an elbow or kink, i.e. for this power the scale free topology  
# fit does not improve after increasing the power. This is why we choose beta1=6 
# Also the scale free topology criterion with a R^2 threshold of 0.95 would lead us to pick a power 
# of 6.  
Note that there is a natural trade-off between maximizing scale-free topology model fit (R^2) and 
maintaining a high mean number of connections: parameter values that lead to an R^2 value close 
to 1 may lead to networks with very few connections. Actually, we consider a signed 
version of the scale free topology fitting index. Since it is biologically implausible that a networks 
contains more hub genes than non-hub genes, we multiply R^2 with -1 if the slope of 
the regression line between log_{10}(p(k)) and log_{10}(k) is positive. 
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These considerations motivate us to propose the following {scale-free topology criterion} for 
choosing the parameters of an adjacency function: Only consider those parameter values 
that lead to a network satisfying scale-free topology at least approximately, e.g. signed R^2>0.80. 
In addition, we recommend that the user take the following additional considerations into 
account when choosing the adjacency function parameter. First, the mean connectivity should be 
high so that the network contains enough information (e.g. for module detection). Second, the slope 
of the regression line should be around -1. 
When considering the power adjacency functions, we find the relationship between R^2 and the 
adjacency function parameter (beta) is characterized by a saturation curve type of. In our 
applications, we use the first parameter value where saturation is reached as long 
as it is above 0.8.   
Below we study how the biological findings depend on the choice of the power. 
# We use the following power for the power adjacency function. 
beta1=6 
Connectivity=softConnectivity(datExpr,power=beta1)-1 
# Let’s create a scale free topology plot. 
# The black curve corresponds to scale free topology and 
# the red curve corresponds to truncated scale free topology. 
par(mfrow=c(1,1)) 
scaleFreePlot(Connectivity, main=paste("soft threshold, power=",beta1), truncated=F);  
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#Module Detection 
 
# An important step in network analysis is module detetion. 
# Here we use methods that use clustering in combination with the topological 
# overlap matrix. 
 

# This code allows one to restrict the analysis to the most connected genes, 
# which may speed up calculations when it comes to module detection. 
ConnectivityCut = 3600 # number of most connected genes that will be considered  
# Incidentally, in the paper by Mischel et al (2005) we considered all 3600 #genes.  
ConnectivityRank = rank(-Connectivity)  
restConnectivity = ConnectivityRank <= ConnectivityCut 
# thus our module detection uses the following number of genes 
sum(restConnectivity) 
 
# Now we define the adjacency matrix for the 3600 most connected genes 
ADJ= adjacency(datExpr[,restConnectivity],power=beta1) 
gc() 
# The following code computes the topological overlap matrix based on the  
# adjacency matrix. 
# TIME: This about a few minutes.... 
dissTOM=TOMdist(ADJ) 
gc() 
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# Now we carry out hierarchical clustering with the TOM matrix.  
# This takes a couple of minutes. 
hierTOM = hclust(as.dist(dissTOM),method="average"); 
par(mfrow=c(1,1)) 
plot(hierTOM,labels=F) 

 
 

# According to our definition, modules correspond to branches of the tree. 
# The question is what height cut-off should be used? This depends on the  
# biology. Large heigth values lead to big modules, small values lead to small  
# but tight modules.  
# In reality, the user should use different thresholds to see how robust the findings are.  
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# The function cutreeStatistColor colors each gene by the branches that 
# result from choosing a particular height cut-off. 
# GREY IS RESERVED to color genes that are not part of any module. 
# We only consider modules that contain at least 125 genes. 
 
colorh1= cutreeStaticColor(hierTOM,cutHeight = 0.94, minSize = 125) 
# The above should be identical to colorh1=datSummary$color1[restConnectivity] 
 
par(mfrow=c(2,1),mar=c(2,4,1,1)) 
plot(hierTOM, main="Cluster Dendrogram", labels=F, xlab="", sub=""); 
plotColorUnderTree(hierTOM,colors=data.frame(module=colorh1)) 
title("Module (branch) color") 

 
COMMENTS:  

1) The colors are assigned based on module size. Turquoise (others refer to it as cyan) colors 
the largest module, next comes blue, next brown, etc. Just type table(colorh1) to figure out 
which color corresponds to what module size. 

2) The minimum module size (minsize1=125) is unusually large. As default, we recommend 
minsize1=50. 

3) Here we choose a fixed height cut-off (h1) for cutting off branches. But we have also 
developed a more flexible method for cutting off branches that adaptively choose a different 
height for each branch. The resulting dynamic tree cutting algorithm (cutreeDynamic) is 
desccribed in Langfelder et al (2008).  
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# An alternative view of this is the so called TOM plot that is generated by the  
# function TOMplot 
# Inputs:  TOM  distance measure, hierarchical (hclust) object, color  
 
# Warning: for large gene sets, say more than 2000 genes  
#this will take a while. I recommend you skip this. 
TOMplot(dissTOM , hierTOM, colorh1) 
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# We also propose to use classical multi-dimensional scaling plots  
# for visualizing the network. Here we chose 2 scaling dimensions 
# This also takes about 10 minutes... 
cmd1=cmdscale(as.dist(dissTOM),2) 
par(mfrow=c(1,1)) 
plot(cmd1, col=as.character(colorh1),  main="MDS plot",xlab="Scaling Dimension 
1",ylab="Scaling Dimension 2") 
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Module significance 
#Next we define a gene significance variable as minus log10 of the univarite Cox regression p-
value for predicting survival on the basis of the gene epxression info 
 
# this defines the gene significance for all genes 
GeneSignificanceALL=-log10(datSummary$pCox) 
# gene significance restricted to the most connected genes: 
GeneSignificance=GeneSignificanceALL[restConnectivity] 
 
# The function verboseBarplot creates a bar plot  
# that shows whether modules are enriched with essential genes.  
# It also reports a Kruskal Wallis P-value. 
# The gene significance can be a binary variable or a quantitative variable.  
# also plots the 95% confidence interval of the mean 
par(mfrow=c(1,1)) 
verboseBarplot(GeneSignificance,colorh1,main="Module Significance ", 
col=levels(factor(colorh1)) ,xlab="Module" )  
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Note that the brown module have a high mean value of gene significance. 
As aside for the experts, we should mention that the p-value (Kruskal Wallis test) cannot be trusted 
due to dependence between the genes. The p-value should really be interpreted as a descriptive (not 
inferential) measure. 
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# To get a sense of how related the modules are one can summarize each module 
# by its first eigengene (referred to as principal components). 
# and then correlate these module eigengenes with each other. 
 
datME=moduleEigengenes(datExpr[,restConnectivity],colorh1)[[1]] 
 
# We define a dissimilarity measure between the module eigengenes that keeps track of the sign of 
the correlation between the module eigengenes. 
dissimME=1-(t(cor(datME, method="p")))/2 
 
hclustdatME=hclust(as.dist(dissimME), method="average" ) 
par(mfrow=c(1,1)) 
plot(hclustdatME, main="Clustering tree based on the module eigengenes of modules") 
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Compare this output with the following: 
signif(cor(datME, use="p"), 2) 
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# Now we create scatter plots of the samples (arrays) along the module eigengenes. 
datMEordered=datME[,hclustdatME$order] 
pairs( datMEordered,  upper.panel = panel.smooth,     lower.panel = panel.cor , 
diag.panel=panel.hist ,main="Relation between module eigengenes") 
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Message: the module eigengenes (first PC) of different modules may be highly correlated. 
WGCNA can be interpreted as a biologically motivated data reduction scheme that allows for 
dependency between the resulting components. Compare this to principal component analysis that 
would impose orthogonality between the components. 
Since modules may represent biological pathways there is no biological reason why modules 
should be orthogonal to each other. 
Aside: If you are interested in networks comprised of module eigengenes, the following article may 
be of interest: 
Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54 
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#To study how connectivity is related to mean gene expression or variance of gene expression  
# we create the following plot. 
mean1=function(x) mean(x,na.rm=T) 
var1=function(x) var(x,na.rm=T) 
meanExpr=apply( datExpr[,restConnectivity],2,mean1) 
varExpr=apply( datExpr[,restConnectivity],2,var1) 
par(mfrow=c(1,2)) 
plot(Connectivity[restConnectivity],meanExpr, col=as.character(colorh1), 
main="Mean(Expression) vs K",xlab="Connectivity") 
plot (Connectivity[restConnectivity],varExpr, col= as.character(colorh1), main="Var(Expression) 
vs K" ,xlab="Connectivity") 
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# The following produces heatmap plots for each module. 
# Here the rows are genes and the columns are samples. 
# Well defined modules results in characteristic band structures since the corresponding genes are  
# highly correlated. 
 
par(mfrow=c(2,1), mar=c(1, 2, 4, 1)) 
ClusterSamples=hclust(dist(datExpr[,restConnectivity] ),method="average")  
# for the first (turquoise) module we use 
which.module="turquoise" 
plot.mat(t(scale(datExpr[ClusterSamples$order,restConnectivity][,colorh1==which.module ]) 
),nrgcols=30,rlabels=T, clabels=T,rcols=which.module, 
main=which.module ) 
# for the second (blue) module we use 
which.module="blue" 
plot.mat(t(scale(datExpr[ClusterSamples$order,restConnectivity][,colorh1==which.module ]) 
),nrgcols=30,rlabels=T, clabels=T,rcols=which.module, 
main=which.module ) 
 

 
 
 



 19 

 

 

# Now we extend the color definition to all genes by coloring all non-module  
# genes grey. 
color1=rep("grey",dim(datExpr)[[2]]) 
color1[restConnectivity]=as.character(colorh1) 
 
# The function intramodularConnectivity computes the whole network connectivity kTotal, 
# the within module connectivity (kWithin). kOut=kTotal-kWithin and  
# and kDiff=kIn-kOut=2*kIN-kTotal 
 
ConnectivityMeasures=intramodularConnectivity(ADJ,colors=colorh1) 
names(ConnectivityMeasures) 
[1] "kTotal"  "kWithin" "kOut"    "kDiff" 

 
# The following plots show the gene significance vs intramodular connectivity 
colorlevels=levels(factor(colorh1)) 

par(mfrow=c(2,3),mar=c(5, 4, 4, 2) + 0.1) 

for (i in c(1:length(colorlevels) ) ) { 

whichmodule=colorlevels[[i]];restrict1=colorh1==whichmodule 

verboseScatterplot(ConnectivityMeasures$kWithin[restrict1], 

GeneSignificance[restrict1],col=colorh1[restrict1],main= paste("set I,", 

whichmodule),ylab="Gene Significance",xlab="Intramodular k") 

} 
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Generalizing the intramodular connectivity measure to *all* genes. 
Note that the intramodular connectivity measure is only defined for the genes inside a given 
module. But in practice it can be very important to measure how connected a given genes is to  
biologically interesting modules.  
Toward this end, we define a module eigengene based connectivity measure for each gene as the 
correlation between a the gene expression and the module eigengene.  
Specifically,  
kMEbrown(i)=cor(x(i), PCbrown)  
where x(i) is the gene expression profile of the i-th gene and PCbrown is the module eigengene of 
the brown module. Note that the definition does not require that the i-th gene is a member of the 
brown module.  
 
 
 
# The following data frame contains the kME values corresponding to each module. 
 
datKME=signedKME(datExpr, datME) 
 
#Note we have an intramodular connectivity measure for each color. 
 
names(datKME) 
[1] "kMEblue"      "kMEbrown"     "kMEgreen"     "kMEgrey"      "kMEturquoise" 
[6] "kMEyellow"    

 

# Note that the intramodular connectivity has been computed for each of the 8000 genes. 
 
dim(datKME) 
[1] 8000    6 
 
attach(datKME) 
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Question: how do the kME measure relate to the standard intramodular connectivity? 
whichmodule="brown"   
restrictGenes= colorh1== whichmodule 
par(mfrow=c(1,1)) 
verboseScatterplot(ConnectivityMeasures$kWithin[ restrictGenes], 
(datKME$kMEbrown[restConnectivity][restrictGenes])^beta1 ,xlab="kIN",ylab="kME^power", 
col=whichmodule,main="Relation between two measures of intramodular k, ") 
 

 
Note that after raising kME to a power of 6, it is highly correlated with kWithin. A theoretical 
derivation of this finding can be found in Horvath and Dong (2008). 
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Question: find genes with high gene significance (Cox-pvalue smaller than 0.05) and high 
intramodular connectivity in the brown module. 
 
attach(datKME) 
FilterGenes= GeneSignificanceALL > -log10(0.05) & abs(kMEbrown)>.85 
table(FilterGenes) 
 
datSummary[FilterGenes,] 
             gbm133a Gene.Symbol LocusLink    pCox HazardRatio HRlower95 HRupper95  HRsd color1 
731  219918_s_at        ASPM    259266 0.04740        1.95     1.100      3.46 0.292  brown 
805    209464_at       AURKB      9212 0.04870        2.21     1.220      4.03 0.306  brown 
1340 214710_s_at       CCNB1       891 0.02790        1.66     0.937      2.94 0.292  brown 
1402 202870_s_at       CDC20       991 0.01090        2.70     1.470      4.96 0.311  brown 
1404   204695_at      CDC25A       993 0.04000        2.09     1.140      3.82 0.309  brown 
1595 204170_s_at        CKS2      1164 0.03720        1.82     1.030      3.22 0.291  brown 
2297 219787_s_at        ECT2      1894 0.02060        2.30     1.260      4.22 0.308  brown 
2630 221591_s_at    FLJ10156     54478 0.01620        1.89     1.070      3.34 0.290  brown 
2671   213007_at    FLJ10719     55215 0.01370        1.92     1.070      3.43 0.297  brown 
2974 202580_x_at       FOXM1      2305 0.02740        1.79     1.020      3.14 0.288  brown 
3360 218662_s_at      HCAP-G     64151 0.04670        1.70     0.957      3.02 0.293  brown 
3475 208808_s_at       HMGB2      3148 0.02750        1.59     0.906      2.80 0.287  brown 
3921 202503_s_at    KIAA0101      9768 0.02760        1.83     1.030      3.25 0.292  brown 
4127   206364_at       KIF14      9928 0.03340        1.81     1.020      3.20 0.292  brown 
4132   218755_at      KIF20A     10112 0.03750        1.81     1.020      3.20 0.292  brown 
4138   218355_at       KIF4A     24137 0.04720        2.52     1.380      4.61 0.307  brown 
4158 218883_s_at       KLIP1     79682 0.02780        1.73     0.975      3.07 0.293  brown 
4164   219306_at       KNSL7     56992 0.01630        2.25     1.250      4.05 0.299  brown 
4166   204162_at       KNTC2     10403 0.02420        1.82     1.030      3.24 0.292  brown 
4168   201088_at       KPNA2      3838 0.02050        2.19     1.210      3.97 0.303  brown 
4481 203362_s_at      MAD2L1      4085 0.02710        1.57     0.895      2.75 0.286  brown 
5245   218039_at      NUSAP1     51203 0.01880        1.84     1.040      3.27 0.293  brown 
5826 218009_s_at        PRC1      9055 0.00247        2.41     1.320      4.41 0.307  brown 
6010 203554_x_at       PTTG1      9232 0.00413        1.97     1.110      3.49 0.292  brown 
6012   208511_at       PTTG2     10744 0.03050        1.60     0.901      2.84 0.293  brown 
6437   201890_at        RRM2      6241 0.01840        1.75     0.982      3.13 0.296  brown 
7450   201292_at       TOP2A      7153 0.02810        1.92     1.080      3.41 0.292  brown 
7453   219148_at        TOPK     55872 0.01930        2.00     1.130      3.54 0.291  brown 
7481 210052_s_at        TPX2     22974 0.00918        1.89     1.070      3.35 0.291  brown 
7624   202954_at       UBE2C     11065 0.00321        2.09     1.150      3.80 0.306  brown 
 
 

Comments: 
The ASPM gene colored in red was the focus of the paper Horvath et al (2006) but there are many 
other interesting genes. 
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To illustrate the use of the kME measures, we also address the following questions 
 
Question: Screen for significant genes that have a negative correlation with the brown module 
eigengene 
FilterGenes= GeneSignificanceALL> -log10(0.05) &  -kMEbrown> .5 # notice the red minus sign! 
table(FilterGenes) 
datSummary[FilterGenes,] 
         gbm133a Gene.Symbol LocusLink   pCox HazardRatio HRlower95 HRupper95  HRsd    color1 
561  206200_s_at      ANXA11       311 0.0132        1.69     0.967      2.97 0.286      grey 
1618 221042_s_at        CLMN     79789 0.0257        1.60     0.906      2.81 0.288     green 
5567   214152_at        PIGB      9488 0.0396        1.55     0.884      2.71 0.286 turquoise 
6682 201811_x_at      SH3BP5      9467 0.0162        2.09     1.180      3.69 0.290 turquoise 

 
Question: Screen for significant genes that are close to the brown module and the green module 
and far away from the yellow module. Answer 
FilterGenes= GeneSignificanceALL > -log10(0.05) & abs(kMEbrown)>.5 & abs(kMEgreen)>.5 
table(FilterGenes) 
datSummary[FilterGenes,] 
        gbm133a Gene.Symbol LocusLink   pCox HazardRatio HRlower95 HRupper95  HRsd    color1 
1422 218399_s_at       CDCA4     55038 0.0438        1.25     0.716      2.18 0.284 turquoise 
1618 221042_s_at        CLMN     79789 0.0257        1.60     0.906      2.81 0.288     green 
3244   213170_at        GPX7      2882 0.0199        1.09     0.626      1.91 0.285      grey 
6682 201811_x_at      SH3BP5      9467 0.0162        2.09     1.180      3.69 0.290 turquoise 

 
 
Question: Screen for significant genes that are close to the brown module and far away from the 
yellow module. Answer 
FilterGenes= GeneSignificanceALL > -log10(0.05) & abs(kMEbrown)>.6 & abs(kMEyellow)<.3 
table(FilterGenes) 
 

 

 

How to output the data? 

 
datout=data.frame(datSummary, colorNEW=color1, ConnectivityNew=Connectivity,datKME ) 
write.table(datout, file="OutputCancerNetwork.csv", sep=",", row.names=F) 
# The file can now be found in your current working directory (see the setwd command above). 
This file should be sent to your clinical collaborators so that they can study the resulting gene list. 
 
Next logical step: carry out a functional enrichment analysis of each module. 
 
For example, input all genes with abs(kMEbrown)>0.8 into  
 
EASE (David)  
http://david.abcc.ncifcrf.gov/summary.jsp 
  
The WGCNA library also contains several functions for gene ontology information (e.g. the 
function GOenrichmentAnalysis) as you can learn from help(WGCNA)
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Robustness with regard to the soft threshold (power= beta). 
We find that the results of weighted gene co-expression network analysis are highly robust with 
regard to the soft threshold beta. Here we show some results that demonstrate this point. 
Now we want to see how the correlation between kWithin and gene significance changes for 
different SOFT thresholds (powers). This analysis is restricted to the brown module genes. 
# Also we compare the 2 different connectivity measures: The standard connectivity measure is 
defined as the row sum of the adjacency matrix. The non-standard connectivity measure  
(kTOM.IN) is defined as row sum of the topological overlap matrix . 
 
# Now we want to see how the correlation between kWithin and gene significance  
# changes for different powers beta within the BROWN module. 
 
corhelp=cor(datExpr[,restConnectivity],use="pairwise.complete.obs") 
whichmodule="brown" 
 
datconnectivitiesSoft=data.frame(matrix(666,nrow=sum(colorh1==whichmodule),ncol=length(pow
ers1))) 
names(datconnectivitiesSoft)=paste("kWithinPower",powers1,sep="") 
for (i in c(1:length(powers1)) ) { 
datconnectivitiesSoft[,i]=apply(abs(corhelp[colorh1==whichmodule, 
colorh1==whichmodule])^powers1[i],1,sum)} 
SpearmanCorrelationsSoft=signif(cor(GeneSignificance[ colorh1==whichmodule], 
datconnectivitiesSoft, method="s",use="p")) 
 
# Here we use the new connectivity measure based on the topological overlap matrix 
datKTOM.IN=data.frame(matrix(666,nrow=sum(colorh1==whichmodule),ncol=length(powers1))) 
names(datKTOM.IN)=paste("omegaWithinPower",powers1,sep="") 
for (i in c(1:length(powers1)) ) { 
datconnectivitiesSoft[,i]=apply( 
1-TOMdist(abs(corhelp[colorh1==whichmodule, colorh1==whichmodule])^powers1[i]) 
,1,sum)} 
SpearmanCorrelationskTOMSoft=as.vector(signif(cor(GeneSignificance[ colorh1==whichmodule], 
datconnectivitiesSoft, method="s",use="p"))) 
 
 
par(mfrow=c(1,1), mar=c(5, 4, 4, 2) +0.1) 
plot(powers1, SpearmanCorrelationsSoft, main="Cor(Connectivity,Gene Significance) vs Soft 
Thresholds(powers)",ylab="Spearman Correlation(Gene Significance,k.in)",xlab="Power 
beta",type="n",ylim=range(c(SpearmanCorrelationsSoft, 
SpearmanCorrelationskTOMSoft),na.rm=T) 
) 
text(powers1, SpearmanCorrelationsSoft,labels=powers1,col="red") 
# this draws a vertical line at the tau that was chosen by the  
# scale free topology criterion. 
abline(v=6,col="red") 
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points(powers1, SpearmanCorrelationskTOMSoft, type="n") 
text(powers1, SpearmanCorrelationskTOMSoft,labels=powers1,col="orange") 
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# Now we define the intramodular clustering coefficient (also see the section below) 
datCCinSoft=data.frame(matrix(666,nrow=sum(colorh1==whichmodule),ncol=length(powers1))) 
names(datCCinSoft)=paste("CCinSoft",powers1,sep="") 
for (i in c(1:length(powers1)) ) {  
datCCinSoft[,i]= clusterCoef(abs(corhelp[colorh1==whichmodule, 
colorh1==whichmodule])^powers1[i]) 
} 
SpearmanCorrelationsCCinSoft=as.vector(signif(cor(GeneSignificance[ colorh1==whichmodule], 
datCCinSoft, method="s",use="p"))) 
 
dathelpSoft=data.frame(signedRsquared=-sign(RpowerTable[,3])*RpowerTable[,2], corGSkINSoft 
=as.vector(SpearmanCorrelationsSoft), corGSwINSoft= 
as.vector(SpearmanCorrelationskTOMSoft),corGSCCSoft=as.vector(SpearmanCorrelationsCCinSo
ft)) 
matplot(powers1,dathelpSoft,type="l",lty=1,lwd=3,col=c("black","red","blue","green"),ylab="",xla
b="beta") 
abline(v=6,col="red") 
legend(13,0.5, c("signed R^2","r(GS,k.IN)","r(GS,kTOM.IN)","r(GS,cc.in)"), 
col=c("black","red","blue","green"), lty=1,lwd=3,ncol = 1, cex=1) 
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#Comment: the 
intramodular cluster coefficient (green line)  achieves the highest correlation  
with the gene significance. The TOM based intramodular connectivity kTOM.in (blue line) is 
superior to the  standard connectivity measure k.in  (red line) in this application. 
The vertical line corresponds to the power picked by the scale free topology criterion. 
The scale free topology criterion leads to near optimal biological signal when using kTOM.IN. 
CAVEAT: It is worth mentioning that in other real data sets k.in outperforms cc.in and kTOM.IN. 
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#Computation of the cluster coefficient in the weighted network. 
# The clustering coefficient measures the cliquishness of a gene. Many references use this concept. 
# For our definition of the clustering coefficient in weighted networks consult Zhang and Horvath 
#(2005) and Dong and Horvath (2007) 
#Here we study how the clustering coefficient depends on the connectivity. 
 
# Since this is computationally intensive (around 15 minutes), we recommend to skip it. 
CC= clusterCoef(ADJ) 
gc() 
 
# Now we plot cluster coefficient versus connectivity 
# for all genes 
par(mfrow=c(1,1),mar=c(2,2,2,1)) 
plot(Connectivity[restConnectivity],CC,col=as.character(colorh1),xlab="Connectivity",ylab="Clust
er Coefficient") 
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#This compute the correlation between cluster coefficient and connectivity within each module. 
restHub= Connectivity[restConnectivity]>0 
by(data.frame(CC=CC[restHub], k=Connectivity[restConnectivity][restHub]), 
INDICES=colorh1[restHub],FUN=cor) 
 
colorh1: blue 

         CC        k 

CC 1.000000 0.242394 

k  0.242394 1.000000 

------------------------------------------------------------------------  

colorh1: brown 

          CC         k 

CC 1.0000000 0.4765162 

k  0.4765162 1.0000000 

------------------------------------------------------------------------  

colorh1: green 

           CC          k 

CC 1.00000000 0.06135442 

k  0.06135442 1.00000000 

------------------------------------------------------------------------  

colorh1: grey 

          CC         k 

CC 1.0000000 0.1347935 

k  0.1347935 1.0000000 

------------------------------------------------------------------------  

colorh1: turquoise 

         CC        k 

CC 1.000000 0.732844 

k  0.732844 1.000000 

------------------------------------------------------------------------  

colorh1: yellow 

         CC        k 

CC 1.000000 0.484205 

k  0.484205 1.000000 
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Unweighted gene co-expression network analysis 
 
# Here we choose a hard threshold for dichotomizing the Pearson correlation  
# matrix 
HARD THRESHOLDING 
 
# To construct an unweighted network (hard thresholding),  
# we consider the following vector of potential thresholds. 
thresholds1= c(seq(.1,.5, by=.1), seq(.55,.95, by=.05) ) 
 
# To choose a cut-off value, we propose to use the Scale-free Topology Criterion (Zhang and  
# Horvath 2005).  Here the focus is on the linear regression model fitting index  
# (denoted below by scale.law.R.2) that  quantify the extent of how well a network  
# satisfies a scale-free topology. 
# The function PickHardThreshold can help one to estimate the cut-off value  
# when using hard thresholding with the step adjacency function. 
# The first column lists the threshold ("cut"), 
# the second column lists the corresponding p-value based on the Fisher transform. 
# The third column reports the resulting scale free topology fitting index R^2. 
# The fourth column reports the slope of the fitting line.  
# The fifth column reports the fitting index for the truncated exponential scale free model.  
# Usually we ignore it. 
# The remaining columns list the mean, median and maximum connectivity. 
# To pick a hard threshold (cut) with the scale free topology criterion: 
# aim for high scale free R^2 (column 3), high connectivity (col 6)  
# and negative slope (around -1, col 4). 
 
RdichotTable=pickHardThreshold(datExpr, thresholds1)[[2]] 
gc() 
 

 

   Cut  p.value scale.law.R.2  slope. truncated.R.2  mean.k. median.k. max.k. 

1  0.10 4.63e-01         0.850  6.5500         0.944 5610.000      5680   6780 

2  0.20 1.39e-01         0.682  1.7900         0.953 3530.000      3580   5520 

3  0.30 2.47e-02        -0.117  0.0722         0.949 1960.000      1890   4200 

4  0.40 2.25e-03         0.603 -0.8360         0.937  947.000       787   2940 

5  0.50 8.72e-05         0.795 -1.2100         0.904  395.000       232   1860 

6  0.55 1.13e-05         0.850 -1.2300         0.901  243.000       110   1410 

7  0.60 1.02e-06         0.837 -1.2400         0.865  145.000        43   1080 

8  0.65 5.92e-08         0.952 -1.1100         0.948   85.900        14    795 

9  0.70 1.93e-09         0.971 -1.0500         0.968   50.200         4    616 

10 0.75 2.88e-11         0.981 -1.0100         0.983   28.900         1    480 

11 0.80 1.40e-13         0.946 -1.0300         0.940   15.700         0    383 

12 0.85 2.22e-16         0.971 -1.0300         0.969    7.200         0    262 

13 0.90 0.00e+00         0.977 -1.0900         0.976    2.170         0    154 

14 0.95 0.00e+00         0.933 -1.2600         0.965    0.194         0     47 
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#Let’s plot the scale free topology model fitting index (R^2) versus the cut-off tau. However, the 
#R^2 values of those cut-offs that lead to a negative slope have been pre-multiplied by -1. 
cex1=0.7 
gc() 
par(mfrow=c(1,2)) 
plot(RdichotTable[,1], -sign(RdichotTable[,4])*RdichotTable[,3],xlab="Hard Threshold 
tau",ylab="Scale Free Topology Model Fit,signed R^2", type="n") 
text(RdichotTable[,1], -sign(RdichotTable[,4])*RdichotTable[,3] , labels=thresholds1,cex=cex1) 
# this line corresponds to using an R^2 cut-off of h 
abline(h=0.95,col="red") 
plot(RdichotTable[,1], RdichotTable[,6],xlab="Hard Threshold tau",ylab="Mean Connectivity", 
type="n") 
text(RdichotTable[,1], RdichotTable[,6] , labels=thresholds1, cex=cex1) 
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To choose a cut-off value tau, we propose to use the Scale-free Topology Criterion (Zhang and 
Horvath 2005).  Here the focus is on the linear regression model 
fitting index (denoted as scale.law.R.2) that  quantify the extent of how well 
a network satisfies a scale-free topology. We choose the cut value (tau) of 0.7 for the correlation 
matrix since this is where the R^2 curve seems to saturates. The red line corresponds to R^2=  0.95. 
From the above table, we find that the resulting slope looks OK (negative and around -1), and the 
mean number of connections looks good Below we investigate different choices of tau. 
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# Now we want to see how the correlation between kWithin and gene significance  
# changes for different hard threshold values tau within the BROWN module. 
 
corhelp=cor(datExpr[,restConnectivity],use="pairwise.complete.obs") 
 
whichmodule="brown" 
# the following data frame contains the intramodular connectivities  
# corresponding to different hard thresholds 
datconnectivitiesHard=data.frame(matrix(666,nrow=sum(colorh1==whichmodule),ncol=length(thr
esholds1))) 
names(datconnectivitiesHard)=paste("kWithinTau",thresholds1,sep="") 
for (i in c(1:length(thresholds1)) ) { 
datconnectivitiesHard[,i]=apply(abs(corhelp[colorh1==whichmodule, 
colorh1==whichmodule])>=thresholds1[i],1,sum)} 
SpearmanCorrelationsHard=signif(cor(GeneSignificance[ colorh1==whichmodule], 
datconnectivitiesHard, method="s",use="p")) 
 
# Now we define the new connectivity measure omega based on the TOM matrix 
# It simply considers TOM as adjacency matrix... 
datkTOMINHard=data.frame(matrix(666,nrow=sum(colorh1==whichmodule),ncol=length(threshol
ds1))) 
names(datkTOMINHard)=paste("omegaWithinHard",thresholds1,sep="") 
for (i in c(1:length(thresholds1)) ) { 
datconnectivitiesHard[,i]=apply( 
1-TOMdist(abs(corhelp[colorh1==whichmodule, 
colorh1==whichmodule])>thresholds1[i]),1,sum)} 
SpearmanCorrelationskTOMHard=as.vector(signif(cor(GeneSignificance[ 
colorh1==whichmodule], datconnectivitiesHard, method="s",use="p"))) 
# Now we compare the performance of the 2 connectivity measures (k.in and  
# kTOM.IN) across different hard thresholds when it comes to predicting  
# prognostic genes in the brown module 
 
par(mfrow=c(1,1), mar=c(5, 4, 4, 2) +0.1) 
plot(thresholds1, SpearmanCorrelationsHard, main=" 
Cor(Connectivity,Gene Significance) vs Hard Thresholds",ylab="Spearman Correlation(Gene 
Significance,Connectivity)",xlab="Threshold tau", type="n", 
ylim=range(c(SpearmanCorrelationsHard, SpearmanCorrelationskTOMHard),na.rm=T)) 
text(thresholds1, SpearmanCorrelationsHard,labels=thresholds1,col="black") 
# this draws a vertical line at the tau that was chosen by the  
# scale free topology criterion. 
abline(v=0.7,col="red") 
points(thresholds1, SpearmanCorrelationskTOMHard, type="n") 
text(thresholds1, SpearmanCorrelationskTOMHard,labels=thresholds1,col="blue") 
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# Now we define the intramodular cluster coefficient 
datCCinHard=data.frame(matrix(666,nrow=sum(colorh1==whichmodule),ncol=length(thresholds1
))) 
names(datCCinHard)=paste("CCinHard",thresholds1,sep="") 
for (i in c(1:length(thresholds1)) ) { 
datCCinHard[,i]= clusterCoef(abs(corhelp[colorh1==whichmodule, 
colorh1==whichmodule])>thresholds1[i])} 
SpearmanCorrelationsCCinHard=as.vector(signif(cor(GeneSignificance[ colorh1==whichmodule], 
datCCinHard, method="s",use="p"))) 
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# Now we compare the performance of the connectivity measures (k.in,  
# kTOM.IN, cluster coefficience) across different hard thresholds when it comes to predicting  
# prognostic genes in the brown module 
 

dathelpHard=data.frame(signedRsquared=-sign(RdichotTable[,4])*RdichotTable[,3], 
corGSkINHard =as.vector(SpearmanCorrelationsHard), corGSwINHard= 
as.vector(SpearmanCorrelationskTOMHard),corGSCCHard=as.vector(SpearmanCorrelationsCCin
Hard)) 
matplot(thresholds1,dathelpHard,type="l",lty=1,lwd=3,col=c("black","red","blue","green"),ylab=""
,xlab="tau",xlim=c(.2,1)) 
legend(0.75,0, c("signed R^2","r(GS,k.in)","r(GS,kTOM.IN)","r(GS,cc.in)"), 
col=c("black","red","blue","green"), lty=1,lwd=3,ncol = 1, cex=1) 
abline(v=.7,col="red") 
 

0.2 0.4 0.6 0.8 1.0

-0
.5

0
.0

0
.5

1
.0

tau

signed R^2
r(GS,k.in)
r(GS,w.in)
r(GS,cc.in)

#Note that very high or very small threshold values lead to a small correlation, 
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#i.e. a diminished biological signal. The red line corresponds to the threshold that was picked using 
#the scale free topology criterion. The scale free topology criterion picked a threshold that leads to  
#very high significant correlation between node connectivity and gene significance. 
 
 
AdjMatHARD=abs(cor(datExpr[,restConnectivity]))>0.70+0.0 
diag(AdjMatHARD)=0 
cluster.coefrestHARD= clusterCoef(AdjMatHARD) 
ConnectivityHARD= apply(AdjMatHARD,2,sum) 
par(mfrow=c(1,1)) 
plot(ConnectivityHARD,cluster.coefrestHARD,col=as.character(colorh1),xlab="Connectivity",yla
b="Cluster Coefficient" ) 
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# Now we correlate the cluster coefficient with connectivity by module in the unweighted network  
 

restHub=ConnectivityHARD>100 

by(data.frame(CC= cluster.coefrestHARD[restHub], k=ConnectivityHARD[restHub]), 

INDICES=colorh1[restHub],FUN=cor) 

 
 
colorh1[restHub]: blue 

           CC          k 

CC  1.0000000 -0.5704594 

k  -0.5704594  1.0000000 

------------------------------------------------------------------------  

colorh1[restHub]: brown 

          CC         k 

CC  1.000000 -0.759792 

k  -0.759792  1.000000 

------------------------------------------------------------------------  

colorh1[restHub]: green 

           CC          k 

CC  1.0000000 -0.5427443 

k  -0.5427443  1.0000000 

------------------------------------------------------------------------  

colorh1[restHub]: grey 

          CC         k 

CC  1.000000 -0.205176 

k  -0.205176  1.000000 

------------------------------------------------------------------------  

colorh1[restHub]: turquoise 

           CC          k 

CC  1.0000000 -0.4295943 

k  -0.4295943  1.0000000 

------------------------------------------------------------------------  

colorh1[restHub]: yellow 

           CC          k 

CC  1.0000000 -0.9097497 

k  -0.9097497  1.0000000 
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# Let’s compare a summary of soft thresholding to one of hard thresholding  
 
#Here are summary statisticis for the different quantities. 

apply(dathelpHard,2,summary) 

$signedRsquared 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

-0.8500  0.6510  0.8915  0.6001  0.9663  0.9810  

$corGSkINHard 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

0.07569 0.40200 0.48760 0.43780 0.58110 0.63380 1.00000  

$corGSwINHard 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

0.07753 0.39630 0.54800 0.46570 0.61860 0.64920 1.00000  

$corGSCCHard 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's  

-0.41460 -0.27070 -0.05500  0.02667  0.35850  0.53910  2.00000  

apply(dathelpSoft,2,summary) 

        signedRsquared corGSkINSoft corGSwINSoft corGSCCSoft 

Min.            0.0927       0.5416       0.5802      0.6698 

1st Qu.         0.9115       0.5797       0.6527      0.7095 

Median          0.9660       0.6063       0.6637      0.7539 

Mean            0.8344       0.5990       0.6577      0.7414 

3rd Qu.         0.9705       0.6250       0.6764      0.7757 

Max.            0.9780       0.6321       0.6808      0.7918 

 
# Comments 

• Using the Max. values, we find that when it comes to correlating gene significance with a 
centrality measure (connectivity or cluster coefficient), the soft intramodular cluster 
coefficient is most highly correlated with gene significance. Next comes the soft TOM 
based connectivity (wIN), then kIN. In other applications, the cluster coefficient is not the 
best centrality measure. But please let us know if you find empirical evidence that the 
cluster coefficient is a good centrality measure. In the latest version of the manuscript 
Zhang and Horvath (2005) we present a theoretical argument that shows that is a weak 
positive correlation between intramodular cluster coefficient and intramodular connectivity 
in weighted networks. In contrast, one finds a negative correlation between cluster 
coefficient and connectivity in unweighted networks (see the plot in the appendix). 

• We find that soft thresholding is superior to hard thresholding especially for low values of 
the scale free topology R^2. 

• In our opinion, soft centrality (connectivity) measures are better than hard measures 
because they are relatively robust with respect to the parameter of the adjacency function. 
For soft thresholding even choosing a power of beta=1 leads to a good biological signal 
(correlation). In contrast, choosing a hard threshold of tau=0.2 leads to a much reduced 
biological signal. Robustness is a very attractive property in this type of analysis since 
picking parameters of the adjacency function is rather ad-hoc. 

• The Scale free topology criterion leads to estimates of the adjacency function that often 
have good biological signal. 

 

 

 

 

 

 



 37 

APPENDIX: Constructing an unweighted networks and comparing it to the weighted 

nework. 
Here we study whether the `soft’ modules of the unweighted network described above can also be 
found in the unweighted network 
# Recall that the soft module assignment in the 3600 most connected genes is given by  
colorh1=as.character(datSummary$color1[restConnectivity]) 
#Let’s define the adjacency matrix of an unweighted network 
ADJ= abs(cor(datExpr[,restConnectivity],use="p"))>0.7 

gc() 

# This is the unweighted connectivity 

k=as.vector(apply(ADJ,2,sum)) 

 
# Let’s compare weighted to unweighted connectivity in a scatter plot 
plot(k, Connectivity[restConnectivity],xlab="Unweighted 

Connectivity",ylab="Weighted Connectivity",main=paste( "correlation = 

",signif(cor(k,Connectivity[restConnectivity]),2)),col=colorh1) 

 
# Comments:  

• the connectivity measures is highly preserved between weighted and unweighted networks 
as long as the scale free topology criterion is used for network construction. It is re-assuring 
that the biological findings will be robust with respect to the network construction method 

• The genes with the highest whole network connectivity are contained in the turquoise 
module, which happens to be the largest module. The second most connected genes are in 
the blue module, which is the second largest module, etc. 

 
# The following code computes the topological overlap matrix based on the  
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# adjacency matrix. 
# TIME: Takes about 10 minutes.... 
dissTOM=TOMdist(ADJ) 
gc() 
 
# Now we carry out hierarchical clustering with the TOM matrix. Branches of the  
# resulting clustering tree will be used to define gene modules. 
 
hierTOM = hclust(as.dist(dissTOM),method="average"); 
par(mfrow=c(1,1)) 
plot(hierTOM,labels=F) 
 
# By our definition, modules correspond to branches of the tree. 
# The function modulecolor2 colors each gene by the branches that 
# result from choosing a particular height cut-off. 
# GREY IS RESERVED to color genes that are not part of any module. 
# We only consider modules that contain at least 125 genes. 
 
colorh2=as.character(modulecolor2(hierTOM,h1=.75, minsize1=125)) 
 
# The following table shows that there is fairly high agreement 
# between the soft and the hard module assignments 
 
table(colorh1,colorh2) 
           colorh2 

colorh1     blue brown green grey turquoise yellow 

  blue       466    0     0   140    0         0   

  brown        0  160     0    25    0         0   

  green        0    0     0     5    3       128   

  grey        35    7     0  1349   22         5   

  turquoise    0    1     0   281  817        13   

  yellow       0    0   133    10    0         0       

#Rand index to measure agreement between the clusterings 

randIndex(table(colorh1,colorh2)) 

[1] 0.5919202 

 

# Note that the brown module in the weighted network (colorh1) is a little bit  
# larger than the corresponding module in the unweighted network. But the point  
# is that it is highly preserved. Since this module is of biological interest,  
# the good news is that the biological findings are robust with respect to the  
# network construction method as long as the scale free topology criterion is  
# used to construct the network. 
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par(mfrow=c(3,1), mar=c(2,2,2,1)) 

plot(hierTOM, main="Unweighted Network Module Tree ", labels=F, xlab="", 

sub=""); 

hclustplot1(hierTOM, colorh2, main="Colored by Unweighted modules") 

hclustplot1(hierTOM, colorh1, main="Colored by Weighted modules") 
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# An alternative view of this is the so called TOM plot that is generated by the  
# function TOMplot 
# Inputs:  TOM  distance measure, hierarchical (hclust) object, color  
# Here we use the unweighted module tree but color it by the weighted modules. 
TOMplot(dissTOM , hierTOM, as.character(datSummary$color1[restConnectivity])) 
gc() 

 
 

#Comment: module assignment is highly preserved. 
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verboseBarplot(GeneSignificance,colorh1,main="Gene Significance in Soft Modules")  
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Gene Significance in Soft Modules , p-value= 3e-31

 

verboseBarplot(GeneSignificance,colorh2,main="Gene Significance in Hard Modules") 
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Gene Significance in Hard Modules , p-value= 2.5e-38
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# Now we compute the cluster coefficient. 
#Since this is computationally intensive, we recommend to skip it. 
CC= clusterCoef(ADJ) 
gc() 
 
plot(k,CC,col= as.character(datSummary$color1[restConnectivity]),xlab="Connectivity 
(Hard)",ylab="Cluster Coefficient") 
 

 
 

 

 

# Comment: for unweighted networks there is an inverse relationship between 

cluster coefficient and connectivity. This is different from the case of 

weighted networks. In our opinion, this inverse relationship is an artifact of 

hard thresholding, see Zhang and Horvath (2005). 
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# Now we study how intramodule connectivity relates to gene significance 
ConnectivityMeasures=intramodularConnectivity(ADJ,colorh2) 
 
 
# The following plots would show the gene significance vs intromodular  

# connectivity 
 
par(mfrow=c(2,3)) 

colorlevels=unique(colorh2) 

whichmodule=colorlevels[[1]];restrict1=colorh2==whichmodule 

verboseScatterplot(ConnectivityMeasures$kWithin[restrict1], 

GeneSignificance[restrict1],col=colorh2[restrict1],main=whichmodule) 

whichmodule= colorlevels[[2]];restrict1=colorh2==whichmodule 

verboseScatterplot(ConnectivityMeasures$kWithin[restrict1], 

GeneSignificance[restrict1],col=colorh2[restrict1],main=whichmodule) 

whichmodule= colorlevels[[3]];restrict1=colorh2==whichmodule 

verboseScatterplot(ConnectivityMeasures$kWithin[restrict1], 

GeneSignificance[restrict1],col=colorh2[restrict1],main=whichmodule) 

whichmodule= colorlevels[[4]];restrict1=colorh2==whichmodule 

verboseScatterplot(ConnectivityMeasures$kWithin[restrict1], 

GeneSignificance[restrict1],col=colorh2[restrict1],main=whichmodule) 

whichmodule= colorlevels[[5]];restrict1=colorh2==whichmodule 

verboseScatterplot(ConnectivityMeasures$kWithin[restrict1], 

GeneSignificance[restrict1],col=colorh2[restrict1],main=whichmodule) 

whichmodule= colorlevels[[6]];restrict1=colorh2==whichmodule 

verboseScatterplot(ConnectivityMeasures$kWithin[restrict1], 

GeneSignificance[restrict1],col=colorh2[restrict1],main=whichmodule) 

 

 

 

 

 

 

THE END:  
To cite the code and methods in this manual, please use 
 
 
Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression 
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1, Article 
17  
 

 


